Soit une contraction positive, avec . Supposons analytique, au sens où il existe une constante telle que pour tout entier . Soit et soit l’espace des suites complexes à -variation forte bornée. On montre que pour tout , la suite appartient à pour presque tout , avec la majoration . Si l’on supprime l’hypothèse d’analyticité, on obtient une majoration , où désigne la moyenne ergodique de . On obtient également des résultats similaires pour les semi-groupes fortement continus de contractions positives sur .
Let be a positive contraction, with . Assume that is analytic, that is, there exists a constant such that for any integer . Let and let be the space of all complex sequences with a finite strong -variation. We show that for any , the sequence belongs to for almost every , with an estimate . If we remove the analyticity assumption, we obtain an estimate , where denotes the ergodic average of . We also obtain similar results for strongly continuous semigroups of positive contractions on -spaces.
@article{AIF_2012__62_6_2069_0, author = {Le Merdy, Christian and Xu, Quanhua}, title = {Strong $q$-variation inequalities for analytic semigroups}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {2069-2097}, doi = {10.5802/aif.2743}, zbl = {1269.47011}, mrnumber = {3060752}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_6_2069_0} }
Le Merdy, Christian; Xu, Quanhua. Strong $q$-variation inequalities for analytic semigroups. Annales de l'Institut Fourier, Tome 62 (2012) pp. 2069-2097. doi : 10.5802/aif.2743. http://gdmltest.u-ga.fr/item/AIF_2012__62_6_2069_0/
[1] Dilations of positive contractions on spaces, Canad. Math. Bull., Tome 20 (1977), pp. 285-292 | MR 458230 | Zbl 0381.47004
[2] Transference of strong type maximal inequalities by separation-preserving representations, Amer. J. Math., Tome 113 (1991), pp. 47-74 | MR 1087801 | Zbl 0729.43003
[3] Analyticity and discrete maximal regularity on -spaces, J. Funct. Anal., Tome 183 (2001), pp. 211-230 | MR 1837537 | Zbl 0987.47027
[4] Pointwise ergodic theorems for arithmetic sets, Publ. Math. IHES, Tome 69 (1989), pp. 5-41 | Numdam | MR 1019960 | Zbl 0705.28008
[5] Oscillation and variation for the Hilbert transform, Duke Math. J., Tome 105 (2000), pp. 59-83 | MR 1788042 | Zbl 1013.42008
[6] Applications of transference: the version of von Neumann’s inequality and the Littlewood-Paley-Stein theory, Linear spaces and Approximation, Birkhäuser, Basel (1978), pp. 53-67 | MR 500219 | Zbl 0398.47005
[7] Transference methods in analysis, Amer. Math. Soc., CBMS 31 (1977) | MR 481928 | Zbl 0377.43001
[8] Puissances d’un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist., Tome 26 (1990) no. 3, pp. 419-436 | Numdam | MR 1066086 | Zbl 0709.47042
[9] The -variation as an operator between maximal operators and singular integrals, J. Evol. Equ., Tome 9 (2009), pp. 81-102 | MR 2501353 | Zbl 1239.42012
[10] Generalization of von Neumann’s spectral sets and integral representation of operators, Bull. Soc. Math. France, Tome 127 (1999), pp. 25-41 | Numdam | MR 1700467 | Zbl 0937.47004
[11] Linear operators, Part 1, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, Pure and Applied Mathematics, Tome 7 (1958) | MR 117523 | Zbl 0084.10402
[12] Dilations of one parameter semigroups of positive contractions on -spaces, Canad. J. Math., Tome 48 (1997), pp. 726-748 | MR 1471054 | Zbl 0907.47039
[13] Ergodic theorem for functions of normal operators (Russian), Funktsional. Anal. i Prilozhen., Tome 18 (1984), pp. 1-6 | MR 739083 | Zbl 0557.47005
[14] Semigroups of linear operators and applications, Oxford University Press, New York (1985) | MR 790497 | Zbl 0592.47034
[15] Oscillation in ergodic theory, Ergodic Theory Dynam. Systems, Tome 18 (1998), pp. 889-935 | MR 1645330 | Zbl 0924.28009
[16] Oscillation and variation inequalities for convolution powers, Ergodic Theory Dynam. Systems, Tome 21 (2001) no. 6, pp. 1809-1829 | MR 1869071 | Zbl 1060.28013
[17] Strong variational and jump inequalities in harmonic analysis, Trans. Amer. Math. Soc., Tome 360 (2008), pp. 6711-6742 | MR 2434308 | Zbl 1159.42013
[18] Variation inequalities for the Fejér and Poisson kernels, Trans. Amer. Math. Soc., Tome 356 (2004), pp. 4493-4518 | MR 2067131 | Zbl 1065.42006
[19] Maximal theorems and square functions for analytic operators on -spaces (to appear in J. London Math. Soc. (see also arXiv:1011.1360v1))
[20] Spectral localization, power boundedness and invariant subspaces under Ritt’s type condition, Studia Math., Tome 134 (1999), pp. 153-167 | MR 1688223 | Zbl 0945.47005
[21] La variation d’ordre des semi-martingales (French), Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Tome 36 (1976), pp. 295-316 | MR 420837 | Zbl 0325.60047
[22] Banach lattices, Springer, Berlin-Heidelberg-NewYork (1991) | MR 1128093 | Zbl 0743.46015
[23] A resolvent condition implying power boundedness, Studia Math., Tome 134 (1999), pp. 143-151 | MR 1688222 | Zbl 0934.47002
[24] Convergence of iterations for linear equations, Birkhaüser, Basel (1993) | MR 1217705 | Zbl 0846.47008
[25] A variation norm Carleson theorem (Preprint 2010, arXiv:1011.1360v1)
[26] Semigroups of linear operators and applications to partial differential equations, Springer (1983) | MR 710486 | Zbl 0516.47023
[27] An analogue of J. von Neumann’s inequality for the space (Russian), Dokl. Akad. Nauk SSSR, Tome 231 (1976) no. 3, pp. 359-542 | MR 435925 | Zbl 0394.47006
[28] Complex interpolation and regular operators between Banach lattices, Arch. Math. (Basel), Tome 62 (1994) no. 3, pp. 261-269 | MR 1259842 | Zbl 0991.46007
[29] The strong -variation of martingale and orthogonal series, Probab. Th. Rel. Fields, Tome 77 (1988) no. 3, pp. 497-514 | MR 933985 | Zbl 0632.60004
[30] Topics in harmonic analysis related to the Littlewood-Paley theory, Princeton University Press, Ann. Math. Studies (1970) | MR 252961 | Zbl 0193.10502
[31] A simple proof of the maximal ergodic theorem, Canad. J. Math., Tome 28 (1976), pp. 1073-1075 | MR 417819 | Zbl 0336.47006
[32] Functional Analysis, Springer Verlag (1968)