E. Feigin a introduit la contraction d’une algèbre de Lie semi-simple dans arXiv :1007.0646 et arXiv :1101.1898. Nous démontrons que ces algèbres de Lie non-réductives conservent quelque unes des propriétés de . En particulier, les algèbres des invariants des représentations adjointe et respectivement coadjointe de sont libres, et l’algèbre enveloppante de est un module libre sur son centre.
Recently, E.Feigin introduced a very interesting contraction of a semisimple Lie algebra (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of . For instance, the algebras of invariants of both adjoint and coadjoint representations of are free, and also the enveloping algebra of is a free module over its centre.
@article{AIF_2012__62_6_2053_0, author = {Panyushev, Dmitri I. and Yakimova, Oksana S.}, title = {A remarkable contraction of semisimple Lie algebras}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {2053-2068}, doi = {10.5802/aif.2742}, zbl = {1266.13003}, mrnumber = {3060751}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_6_2053_0} }
Panyushev, Dmitri I.; Yakimova, Oksana S. A remarkable contraction of semisimple Lie algebras. Annales de l'Institut Fourier, Tome 62 (2012) pp. 2053-2068. doi : 10.5802/aif.2742. http://gdmltest.u-ga.fr/item/AIF_2012__62_6_2053_0/
[1] Invariants et covariants des groupes algébriques réductifs (2000) (dans : “Théorie des invariants et géometrie des variétés quotients, Travaux en cours, t. 61, 83–168, Paris: Hermann) | Zbl 1095.14003
[2] -degeneration of flag varieties, Selecta Math., New Series, to appear | Zbl 1267.14064 | Zbl pre06085749
[3] Degenerate flag varieties and the median Genocchi numbers, Math. Research Letters, Tome 18 (2011) no. 6, pp. 1163-1178 | MR 2915473 | Zbl 1279.14062
[4] PBW filtration and bases for irreducible modules in type , Transform. Groups, Tome 16 (2011) no. 1, pp. 71-89 | MR 2785495 | Zbl 1237.17011
[5] Sur le centre de l’algèbre enveloppante d’une algèbre de Takiff, Ann. Math. Blaise Pascal, Tome 1 (1994) no. 2, p. 15-31 (1995) | Numdam | MR 1321674 | Zbl 0842.17008
[6] Geometry of absolutely admissible representations, Number theory, algebraic geometry and commutative algebra, in honor of Yasuo Akizuki, Kinokuniya, Tokyo (1973), pp. 373-452 | MR 367077 | Zbl 0271.20022
[7] On semi-invariants and index for biparabolic (seaweed) algebras. II, J. Algebra, Tome 312 (2007) no. 1, pp. 158-193 | MR 2320453 | Zbl 1184.17008
[8] Lie group representations on polynomial rings, Amer. J. Math., Tome 85 (1963), pp. 327-404 | MR 158024 | Zbl 0124.26802
[9] On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra, Tome 313 (2007) no. 1, pp. 343-391 | MR 2326150 | Zbl 1163.17012
[10] On the coadjoint representation of -contractions of reductive Lie algebras, Adv. Math., Tome 213 (2007) no. 1, pp. 380-404 | MR 2331248 | Zbl 1177.17010
[11] Semi-direct products of Lie algebras and their invariants, Publ. Res. Inst. Math. Sci., Tome 43 (2007) no. 4, pp. 1199-1257 | MR 2389799 | Zbl 1151.14036
[12] Champs de vecteurs invariants sur une algèbre de Lie réductive complexe, J. Math. Soc. Japan, Tome 40 (1988) no. 4, pp. 615-628 | MR 959089 | Zbl 0679.17004
[13] Lifting smooth homotopies of orbit spaces, Inst. Hautes Études Sci. Publ. Math. (1980) no. 51, pp. 37-135 | Numdam | MR 573821 | Zbl 0449.57009
[14] Conjugacy classes in algebraic groups, Group theory, Beijing 1984, Springer, Berlin (Lecture Notes in Math.) Tome 1185 (1986), pp. 175-209 | MR 842444 | Zbl 0624.20029
[15] Gruppy i algebry Li - 3, Sovrem. probl. matematiki. Fundam. napravl., t. 41, Moskva: VINITI, Russian (1990) (English translation: “Lie Groups and Lie Algebras" III (Encyclopaedia Math. Sci., vol. 41, Berlin: Springer 1994) | Zbl 0693.00007
[16] Covariants de groupes algébriques réductifs, Université de Genève (1974) (Thèse n° 1671)
[17] One-parameter contractions of Lie-Poisson brackets, J. Europ. Math. Soc., to appear; arXiv:1202.3009