Nous démontrons que la suite spectrale de Hodge-De Rham d’un champ d’Artin propre modéré en caractéristique (d’après Abramovich, Olsson et Vistoli) qui se relève mod dégénère. Nous étendons ce résultat à des schémas quotients d’un schéma lisse par un schéma en groupes linéaires réductifs.
We prove that the Hodge-de Rham spectral sequence for smooth proper tame Artin stacks in characteristic (as defined by Abramovich, Olsson, and Vistoli) which lift mod degenerates. We push the result to the coarse spaces of such stacks, thereby obtaining a degeneracy result for schemes which are étale locally the quotient of a smooth scheme by a finite linearly reductive group scheme.
@article{AIF_2012__62_6_2013_0, author = {Satriano, Matthew}, title = {de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {2013-2051}, doi = {10.5802/aif.2741}, zbl = {pre06159904}, mrnumber = {3060750}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_6_2013_0} }
Satriano, Matthew. de Rham Theory for Tame Stacks and Schemes with Linearly Reductive Singularities. Annales de l'Institut Fourier, Tome 62 (2012) pp. 2013-2051. doi : 10.5802/aif.2741. http://gdmltest.u-ga.fr/item/AIF_2012__62_6_2013_0/
[1] Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble), Tome 58 (2008) no. 4, pp. 1057-1091 http://aif.cedram.org/item?id=AIF_2008__58_4_1057_0 | Numdam | MR 2427954 | Zbl 1222.14004
[2] Compactifying the space of stable maps, J. Amer. Math. Soc., Tome 15 (2002) no. 1, p. 27-75 (electronic) | Article | MR 1862797 | Zbl 0991.14007
[3] Cohomology of stacks, Intersection theory and moduli, Abdus Salam Int. Cent. Theoret. Phys., Trieste (ICTP Lect. Notes, XIX) (2004), p. 249-294 (electronic) | MR 2172499 | Zbl 1081.58003
[4] Cohomological descent (2009) (http://math.stanford.edu/~conrad/papers/cohdescent.pdf)
[5] Relèvements modulo et décomposition du complexe de de Rham, Invent. Math., Tome 89 (1987) no. 2, pp. 247-270 | Article | MR 894379 | Zbl 0632.14017
[6] -adic Hodge theory, J. Amer. Math. Soc., Tome 1 (1988) no. 1, pp. 255-299 | Article | MR 924705 | Zbl 0764.14012
[7] Smooth toric DM stacks (2009) (arXiv:0708.1254v2)
[8] Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., Tome 13 (1974), pp. 115-175 | MR 347810 | Zbl 0289.14010
[9] Complexe cotangent et déformations. I, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 239 (1971) | MR 491680 | Zbl 0224.13014
[10] Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970) no. 39, pp. 175-232 | Numdam | MR 291177 | Zbl 0221.14007
[11] Quotients by groupoids, Ann. of Math. (2), Tome 145 (1997) no. 1, pp. 193-213 | Article | MR 1432041 | Zbl 0881.14018
[12] Champs algébriques, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 39 (2000) | MR 1771927 | Zbl 0945.14005
[13] Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Lett., Tome 12 (2005) no. 2-3, pp. 207-217 | MR 2150877 | Zbl 1080.14023
[14] Geometric invariant theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], Tome 34 (1994) | MR 1304906 | Zbl 0797.14004
[15] -stacks and restriction of scalars, Duke Math. J., Tome 134 (2006) no. 1, pp. 139-164 | Article | MR 2239345 | Zbl 1114.14002
[16] Sheaves on Artin stacks, J. Reine Angew. Math., Tome 603 (2007), pp. 55-112 | Article | MR 2312554 | Zbl 1137.14004
[17] A generalization of the Chevalley-Shephard-Todd theorem to the case of linearly reductive group schemes (2009) (arXiv:0911.2058v1)
[18] Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn (1977), pp. 525-563 | MR 485870 | Zbl 0373.14007
[19] K-théorie et cohomologie des champs algébriques: Théorèmes de Riemann-Roch, D-modules et théorèmes GAGA (1999) (arXiv:math/9908097v2)
[20] Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math., Tome 97 (1989) no. 3, pp. 613-670 | Article | MR 1005008 | Zbl 0694.14001