Soit un corps de caractéristique nulle, un polynôme de Laurent en variables, à coefficients dans et non dégénéré pour son polyèdre de Newton à l’infini. Soit fonctions non constantes à variables séparées et définies sur des variétés lisses. A la manière de Guibert, Loeser et Merle, dans le cas local, nous calculons dans cet article, la fibre de Milnor motivique à l’infini de la composée en termes du polyèdre de Newton à l’infini de . Pour égal à la somme nous obtenons une formule du type Thom-Sébastiani. Ceci permet d’introduire une notion de cycles évanescents motiviques d’une fonction pour la valeur infini notée , qui vérifie comme dans le cas local une formule de convolution. En particulier si est le polynôme , nous montrons que le spectre de vaut ce qui coïncide avec le spectre à l’infini de considéré par Douai et Sabbah.
Let be a field of characteristic zero and be a Laurent polynomial in variables, with coefficients in and non degenerate for its Newton polyhedron at infinity. Let be non constant functions with separated variables and defined on smooth varieties. As Guibert, Loeser and Merle in the local case, we compute in this article the motivic Milnor fiber at infinity of in terms of the Newton polyhedron at infinity of . For equal to the sum , we obtained a Thom-Sebastiani formula. Then we can introduce a notion of motivic vanishing cycles of a function for the infinite value denoted by , and which verified, as in the local case, a convolution formula. In particular if is the polynomial , we show that the spectrum is which coincides with the spectrum at infinity of considered by Douai and Sabbah.
@article{AIF_2012__62_5_1943_0, author = {Raibaut, Michel}, title = {Fibre de Milnor motivique \`a l'infini et composition avec un polyn\^ome non d\'eg\'en\'er\'e}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {1943-1981}, doi = {10.5802/aif.2739}, zbl = {1266.14008}, mrnumber = {3025157}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_5_1943_0} }
Raibaut, Michel. Fibre de Milnor motivique à l’infini et composition avec un polynôme non dégénéré. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1943-1981. doi : 10.5802/aif.2739. http://gdmltest.u-ga.fr/item/AIF_2012__62_5_1943_0/
[1] On motivic zeta functions and the motivic nearby fiber, Math. Z., Tome 249 (2005) no. 1, pp. 63-83 | Article | MR 2106970 | Zbl 1085.14020
[2] Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974) no. 44, pp. 5-77 | Numdam | MR 498552 | Zbl 0237.14003
[3] Germs of arcs on singular algebraic varieties and motivic integration, Invent. Math., Tome 135 (1999) no. 1, pp. 201-232 | Article | MR 1664700 | Zbl 0928.14004
[4] Geometry on arc spaces of algebraic varieties, European Congress of Mathematics, Vol. I (Barcelona, 2000), Birkhäuser, Basel (Progr. Math.) Tome 201 (2001), pp. 327-348 | MR 1905328 | Zbl 1079.14003
[5] Gauss-Manin systems, Brieskorn lattices and Frobenius structures. I, Ann. Inst. Fourier (Grenoble), Tome 53 (2003) no. 4, pp. 1055-1116 http://aif.cedram.org/item?id=AIF_2003__53_4_1055_0 | Article | Numdam | MR 2033510 | Zbl 1079.32016
[6] Gauss-Manin systems, Brieskorn lattices and Frobenius structures. II (2004), pp. 1-18
[7] Intersection theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 2 (1998) | MR 1644323 | Zbl 0541.14005
[8] Espaces d’arcs et invariants d’Alexander, Comment. Math. Helv., Tome 77 (2002) no. 4, pp. 783-820 | Article | MR 1949114 | Zbl 1046.14008
[9] Nearby cycles and composition with a nondegenerate polynomial, Int. Math. Res. Not. (2005) no. 31, pp. 1873-1888 | Article | MR 2171196 | Zbl 1093.14032
[10] Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink, Duke Math. J., Tome 132 (2006) no. 3, pp. 409-457 | Article | MR 2219263 | Zbl 1173.14301
[11] Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203 ; ibid. (2), Tome 79 (1964), pp. 205-326 | Article | MR 199184 | Zbl 0122.38603
[12] Polyèdres de Newton et nombres de Milnor, Invent. Math., Tome 32 (1976) no. 1, pp. 1-31 | Article | MR 419433 | Zbl 0328.32007
[13] Seattle lectures on motivic integration, Algebraic geometry—Seattle 2005. Part 2, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 80 (2009), pp. 745-784 | MR 2483954 | Zbl 1181.14017
[14] Motivic measures, Astérisque (2002) no. 276, pp. 267-297 (Séminaire Bourbaki, Vol. 1999/2000) | Numdam | MR 1886763 | Zbl 0996.14011
[15] Monodromy at infinity of polynomial map and mixed Hodge modules, arXiv :0912.5144v5
[16] Monodromy zeta functions at infinity, Newton polyhedra and constructible sheaves, Math. Z., Tome 268 (2011) no. 1-2, pp. 409-439 | Article | MR 2805442 | Zbl pre05909124
[17] Vanishing homologies and the variable saddlepoint method, Singularities, Part 2 (Arcata, Calif., 1981), Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 40 (1983), pp. 319-333 | MR 713258 | Zbl 0519.49026
[18] Fibre de Milnor motivique à l’infini, C. R. Math. Acad. Sci. Paris, Tome 348 (2010) no. 7-8, pp. 419-422 | Article | MR 2607031 | Zbl 1195.14028
[19] Singularités à l’infini et intégration motivique, Thèse, Université Nice Sophia Antipolis (2010)
[20] Singularités à l’infini et intégration motivique, Bull. Soc. Math. France, Tome 140 (2012) no. 1, pp. 51-100 | Numdam | MR 2903771 | Zbl pre06032259
[21] Monodromy at infinity and Fourier transform, Publ. Res. Inst. Math. Sci., Tome 33 (1997) no. 4, pp. 643-685 | Article | MR 1489993 | Zbl 0920.14003
[22] Mixed Hodge modules, Publ. Res. Inst. Math. Sci., Tome 26 (1990) no. 2, pp. 221-333 | Article | MR 1047415 | Zbl 0727.14004
[23] Variation of mixed Hodge structure. I, Invent. Math., Tome 80 (1985) no. 3, pp. 489-542 | Article | MR 791673 | Zbl 0626.14007