Soit un corps global de caractéristique différente de 2. Soit une variété symétrique définie sur et un ensemble fini de places de . Nous obtenons des résultats de comptage et d’équidistribution pour les points S-entiers de . Nos résultats sont effectifs quand est un corps de nombre.
Let be a global field of characteristic not 2. Let be a symmetric variety defined over and a finite set of places of . We obtain counting and equidistribution results for the S-integral points of . Our results are effective when is a number field.
@article{AIF_2012__62_5_1889_0, author = {Benoist, Yves and Oh, Hee}, title = {Effective equidistribution of S-integral points on symmetric varieties}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {1889-1942}, doi = {10.5802/aif.2738}, zbl = {pre06130496}, mrnumber = {3025156}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_5_1889_0} }
Benoist, Yves; Oh, Hee. Effective equidistribution of S-integral points on symmetric varieties. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1889-1942. doi : 10.5802/aif.2738. http://gdmltest.u-ga.fr/item/AIF_2012__62_5_1889_0/
[1] Resolution of singularities and division of distributions, Comm. Pure Appl. Math., Tome 23 (1970), pp. 145-150 | Article | MR 256156 | Zbl 0188.19405
[2] Nonlinear analysis on manifolds. Monge-Ampère equations, Springer, GM, Tome 252 (1982) | MR 681859 | Zbl 0512.53044
[3] Five lectures on lattices, Séminaires et Congrès, Tome 18 (2010)
[4] Polar decomposition for -adic symmetric spaces, Int. Math. Res. Not., Tome 24 (2007) (article IC 121) | MR 2377008 | Zbl 1137.22008
[5] Groupes réductifs sur un corps local I, Publ. IHES, Tome 41 (1972), pp. 5-252 | Numdam | MR 327923 | Zbl 0254.14017
[6] Groupes réductifs sur un corps local II, Publ. IHES, Tome 60 (1984), pp. 5-184 | Numdam | MR 327923 | Zbl 0254.14017
[7] On the distribution of points of bounded height on equivariant compactification of vector groups, Invent. Math., Tome 48 (2002), pp. 421-452 | Article | MR 1906155 | Zbl 1067.11036
[8] Démonstration de la conjecture , Invent. Math., Tome 151 (2003), pp. 297-328 | Article | MR 1953260 | Zbl 1025.11012
[9] Hecke operators and equidistribution of Hecke points, Inv. Math., Tome 144 (2003), pp. 327-351 | Article | MR 1827734 | Zbl 1144.11301
[10] Classification of semialgebraic -adic sets up to semi-algebraic bijection, Jour. Reine Angw. Math., Tome 540 (2001), pp. 105-114 | MR 1868600 | Zbl 0984.14018
[11] Asymptotic behavior of trajectories of unipotent flows on homogeneous spaces, Proc. Indian. Acad. Sci., Tome 101 (1991), pp. 1-17 | Article | MR 1101994 | Zbl 0731.22008
[12] Limit distribution of orbits of unipotent flows and values of quadratic forms, Advances in Soviet Math., Tome 16 (1993), pp. 91-137 | MR 1237827 | Zbl 0814.22003
[13] An analogue of the Cartan decomposition for p-adic reductive symmetric spaces, Pacific J. Math., Tome 251 (2011), pp. 1-21 | Article | MR 2794612 | Zbl 1220.22003
[14] On the evaluation of certain -adic integral, Progress in Math., Tome 59 (1985), pp. 25-47 | MR 902824 | Zbl 0597.12021
[15] -adic semialgebraic sets and cell decomposition, Jour. Reine Angw. Math., Tome 369 (1986), pp. 154-166 | MR 850632 | Zbl 0584.12015
[16] Hyperbolic distribution problems and half integral weight Maass forms, Inven. Math., Tome 92 (1988), pp. 73-90 | Article | MR 931205 | Zbl 0628.10029
[17] Density of integer points on affine homogeneous varieties, Duke Math. Journ., Tome 71 (1993), pp. 143-179 | Article | MR 1230289 | Zbl 0798.11024
[18] Diagonalizable flows on locally homogeneous spaces and number theory, Int. Cong. Math. (2006), pp. 1731-1759 | MR 2275667 | Zbl 1121.37028
[19] Effective equidistribution of closed orbits of semisimple groups on homogeneous spaces, Invent. Math., Tome 177 (2009), pp. 137-212 | Article | MR 2507639 | Zbl 1176.37003
[20] Local-Global principles for representations of quadratic forms, Inv. Math., Tome 171 (2008), pp. 257-279 | Article | MR 2367020 | Zbl 1247.11048 | Zbl pre05248087
[21] Mixing, counting and equidistribution in Lie groups, Duke Math. Journ., Tome 71 (1993), pp. 181-209 | Article | MR 1230290 | Zbl 0798.11025
[22] Unipotent flows and counting lattice points on homogeneous varieties, Annals of Math., Tome 143 (1996), pp. 149-159 | Article | MR 1381987 | Zbl 0852.11054
[23] Representations of integers by an invariant polynomial and unipotent flows, Duke Math. Journ., Tome 135 (2006), pp. 481-506 | Article | MR 2272974 | Zbl 1138.11011
[24] Domaines fondamentaux des groupes arithmétiques, Seminaire Bourbaki, Tome 257 (1963) | Numdam | MR 191899 | Zbl 0136.30101
[25] Manin’s and Peyre’s conjectures on rational points and adelic mixing, Ann. Sci. Ecole Norm. Sup., Tome 41 (2008), pp. 47-97 | Numdam | MR 2482443 | Zbl 1161.14015
[26] The ergodic theory of lattice subgroups, Annals Math. Studies, Tome 172 (2009) | MR 2573139 | Zbl 1186.37004
[27] Rational points on homogeneous varieties and Equidistribution for Adelic periods, GAFA, Tome 21 (2011), pp. 319-392 | Article | MR 2795511 | Zbl 1317.11069 | Zbl pre05902967
[28] Integral points on symmetric varieties and Satake compactifications, Amer. J. Math., Tome 131 (2009), pp. 1-57 | Article | MR 2488484 | Zbl 1231.14041
[29] Distribution of lattice orbits on homogeneous varieties, GAFA, Tome 17 (2007), pp. 58-115 | Article | MR 2306653 | Zbl 1112.37001
[30] Existence et équidistribution des matrices de dénominateur n dans les groupes unitaires et orthogonaux, Ann. Inst. Fourier, Tome 58 (2008), pp. 1185-1212 | Article | Numdam | MR 2427958 | Zbl 1149.11017
[31] On rationality properties of involutions of reductive groups, Adv. in Math., Tome 99 (1993), pp. 26-97 | Article | MR 1215304 | Zbl 0788.22022
[32] Resolution of singularities of an algebraic variety over a field of characteristic zero, Ann. of Math., Tome 79 (1964), pp. 109-326 | Article | MR 199184 | Zbl 0122.38603
[33] Fourier coefficients of modular forms of half integral weight, Inv. Math., Tome 87 (1987), pp. 385-401 | Article | MR 870736 | Zbl 0606.10017
[34] Integration sur les fibres d’une fonction analytique (Travaux en Cours) Tome 34 (1999), pp. 1-39
[35] Distribution des orbites des réseaux sur le plan réel, CRAS, Tome 329 (1999), p. 61-54 | MR 1703338 | Zbl 0928.22012
[36] Additive problems and eigenvalues of the modular operators (Proc. Int. Cong. Math. Stockholm) (1962), pp. 270-284 | Zbl 0116.03604
[37] On definable subsets of -adic fields, J. Symb. Logic, Tome 41 (1976), pp. 605-610 | Article | MR 485335 | Zbl 0362.02046
[38] Discrete subgroups of semisimple Lie groups, Springer Ergebnisse (1991) | MR 1090825 | Zbl 0732.22008
[39] On some aspects of the theory of Anosov systems, Springer (2004) | MR 2035655
[40] Homogeneous asymptotic limits of Haar measures of semisimple linear groups, Duke Math. Jour., Tome 136 (2007), pp. 357-399 | Article | MR 2286635 | Zbl 1117.22006
[41] Equidistribution, -functions and ergodic theory: on some problems of Yu. Linnik, Proc. Int. Cong. Math. (2006) | MR 2275604 | Zbl 1157.11019
[42] On the space of ergodic invariant measures of unipotent flows, ETDS, Tome 15 (1995), pp. 149-159 | MR 1314973 | Zbl 0818.58028
[43] Uniform pointwise bounds for matrix coefficients of unitary representations and applications to Kazhdan constants, Duke Math. J., Tome 113 (2002), pp. 133-192 | Article | MR 1905394 | Zbl 1011.22007
[44] Hardy-Littlewood system and representations of integers by invariant polynomials, GAFA, Tome 14 (2004), pp. 791-809 | MR 2084980 | Zbl 1196.11057
[45] Algebraic groups and number theory, Ac. Press (1994) | MR 1278263 | Zbl 0841.20046
[46] Strong approximation for semisimple groups over function fields, Annals of Math., Tome 105 (1977), pp. 553-572 | Article | MR 444571 | Zbl 0348.22006
[47] On Raghunathan’s measure conjecture, Annals of Math., Tome 134 (1991), pp. 545-607 | Article | MR 1135878 | Zbl 0763.28012
[48] Diophantine problems and linear groups, Proc. Int. Cong. Math. (1990), pp. 459-471 | MR 1159234 | Zbl 0743.11018
[49] Limit distribution of expanding translates of certain orbits on homogeneous spaces on homogeneous spaces, Proc. Indian Acad. Sci. Math. Sci., Tome 106 (1996), pp. 105-125 | Article | MR 1403756 | Zbl 0864.22004