Nous étudions l’ensemble Conf des immersions conformes entre deux variétés pseudo-riemanniennes et . Nous caractérisons notamment l’adhérence de Conf dans l’espace des applications continues , et décrivons quelques propriétés géométriques de lorsque cette adhérence est non triviale.
We study the set Conf of conformal immersions between two pseudo-Riemannian manifolds and . We characterize the closure of Conf in the space of continuous maps from to , and we investigate the geometric properties of whenever this closure is nontrivial.
@article{AIF_2012__62_5_1627_0, author = {Frances, Charles}, title = {D\'eg\'enerescence locale des transformations conformes pseudo-riemanniennes}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {1627-1669}, doi = {10.5802/aif.2732}, zbl = {1261.53052}, mrnumber = {3025150}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_5_1627_0} }
Frances, Charles. Dégénerescence locale des transformations conformes pseudo-riemanniennes. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1627-1669. doi : 10.5802/aif.2732. http://gdmltest.u-ga.fr/item/AIF_2012__62_5_1627_0/
[1] Self-similar Lorentzian manifolds, Ann. Global Anal. Geom., Tome 3 (1985) no. 1, pp. 59-84 | Article | MR 812313 | Zbl 0538.53060
[2] A primer on the (2+1) Einstein universe., Recent Developments in Pseudo-Riemannian Geometry, ESI Lectures in Mathematics and Physics (2008) | MR 2436232 | Zbl 1154.53047
[3] Einstein manifolds, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Tome 10 (1987) | Zbl 1147.53001
[4] On distinguished curves in parabolic geometries, Transform. Groups, Tome 9 (2004) no. 2, pp. 143-166 | Article | MR 2056534 | Zbl 1070.53021
[5] Les géodésiques des structures conformes, C. R. Acad. Sci. Paris Sér. I Math., Tome 294 (1982) no. 18, pp. 629-632 | MR 664297 | Zbl 0487.53011
[6] Convergence and degeneracy of quasiconformal maps of Riemannian manifolds, J. Anal. Math., Tome 69 (1996), pp. 1-24 | Article | MR 1428092 | Zbl 0871.53031
[7] The action of conformal transformations on a Riemannian manifold, Math. Ann., Tome 304 (1996) no. 2, pp. 277-291 | Article | MR 1371767 | Zbl 0866.53027
[8] Géométrie et dynamique lorentziennes conformes (Thèse, ENS Lyon, 2002, available at http ://mahery.math.u-psud.fr/frances/)
[9] Sur le groupe d’automorphismes des géométries paraboliques de rang 1, Ann. Sci. École Norm. Sup. (4), Tome 40 (2007) no. 5, pp. 741-764 (English version : eprint arXiv :math/0608.537v1) | Numdam | MR 2382860 | Zbl 1135.53016
[10] The Carathéodory convergence theorem for quasiconformal mappings in space, Ann. Acad. Sci. Fenn. Ser. A I No., Tome 336/11 (1963), pp. 21 | MR 160898 | Zbl 0136.38102
[11] Transformation groups in differential geometry. Reprint of the 1972 edition., Springer-Verlag, Berlin, Classics in Mathematics (1995) | MR 1336823 | Zbl 0829.53023
[12] Liouville’s theorem in conformal geometry, Pures et Appl. (9) (to appear) (Classics in Mathematics) | MR 2355458 | Zbl 1127.53014
[13] The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry, Tome 6 (1971/72), pp. 247-258 | MR 303464 | Zbl 0236.53042
[14] On the conformal and CR automorphism groups, Geom. Funct. Anal., Tome 5 (1995) no. 2, pp. 464-481 | Article | MR 1334876 | Zbl 0835.53015
[15] A Mathematical Introduction to Conformal Field Theory, Springer-Verlag, Berlin (1997) | MR 1473464 | Zbl 0874.17031
[16] Differential Geometry : Cartan’s generalization of Klein’s Erlangen Program, Springer, New York (1997) | MR 1453120 | Zbl 0876.53001
[17] Lectures on -dimensional quasiconformal mappings, Springer-Verlag, Berlin-New York, Lecture Notes in Mathematics, Tome 229 (1971) | MR 454009 | Zbl 0221.30031
[18] Sur les actions affines des groupes discrets, Ann. Inst. Fourier, Tome 47 (1997), pp. 641-685 | Article | Numdam | MR 1450429 | Zbl 0865.57038
[19] Isometry groups and geodesic foliations of Lorentz manifolds. I. Foundations of Lorentz dynamics, Geom. Funct. Anal., Tome 9 (1999) no. 4, pp. 775-822 | Article | MR 1719606 | Zbl 0946.53035
[20] Isometry groups and geodesic foliationsof Lorentz manifolds. II. Geometry of analytic Lorentz manifolds with large isometry groups, Geom. Funct. Anal., Tome 9 (1999) no. 4, pp. 823-854 | Article | MR 1719610 | Zbl 0946.53036