Étant donné un schéma en groupes fini modéré, nous construisons des espaces de modules de G-torseurs sur des variétés algébriques, en utilisant une version en grande dimension de la théorie des morphismes stables tordus dans les champs classifiants.
Given a finite tame group scheme , we construct compactifications of moduli spaces of -torsors on algebraic varieties, based on a higher-dimensional version of the theory of twisted stable maps to classifying stacks.
@article{AIF_2012__62_4_1483_0, author = {Olsson, Martin}, title = {Integral models for moduli spaces of $G$-torsors}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {1483-1549}, doi = {10.5802/aif.2728}, zbl = {pre06101193}, mrnumber = {3025749}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_4_1483_0} }
Olsson, Martin. Integral models for moduli spaces of $G$-torsors. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1483-1549. doi : 10.5802/aif.2728. http://gdmltest.u-ga.fr/item/AIF_2012__62_4_1483_0/
[1] Tame stacks in positive characteristic, Annales de l’Institut Fourier, Tome 57 (2008), pp. 1057-1091 | Article | Numdam | MR 2427954 | Zbl 1222.14004
[2] Twisted stable maps to tame Artin stacks (to appear in J. Alg. Geometry) | MR 2786662 | Zbl 1225.14020
[3] Compactifying the space of stable maps, J. Amer. Math. Soc., Tome 15 (2002), pp. 27-75 | Article | MR 1862797 | Zbl 0991.14007
[4] Algebraic approximation of structures over complete local rings, Publications Mathématiques de l’IHÉS, Tome 36 (1969), pp. 23-58 | Article | Numdam | MR 268188 | Zbl 0181.48802
[5] Algebraization of formal moduli: I, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo (1969), pp. 21-71 | MR 260746 | Zbl 0205.50402
[6] Théorie des topos et cohomologie étale des schémas, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 269, 270, 305 (1972)
[7] Parabolic sheaves on logarithmic schemes, preprint (2010)
[8] Using stacks to impose tangency conditions on curves, American J. of Math., Tome 129 (2007), pp. 405-427 | Article | MR 2306040 | Zbl 1127.14002
[9] Théorie de Hodge: II, Inst. Hautes Études Sci. Publ. Math., Tome 40 (1971), pp. 5-57 | Article | Numdam | MR 498551 | Zbl 0219.14007
[10] Cohomologie étale, Séminaire de Géométrie Algébrique , Springer (Lecture Notes in Math) Tome 569 (1977) | MR 463174 | Zbl 0349.14008
[11] The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math., Tome 36 (1969), pp. 75-109 | Article | Numdam | MR 262240 | Zbl 0181.48803
[12] Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. Tome 4, 8, 11, 17, 20, 24, 28, 32 (1961–1967) | Numdam | Zbl 0153.22301
[13] Global smoothings of varieties with normal crossings, Ann. of Math., Tome 118 (1983), pp. 75-114 | Article | MR 707162 | Zbl 0569.14002
[14] Revêtements étales et groupe fondamental, Springer, Lectures Notes in Math, Tome 224 (1971) | MR 354651
[15] Log smooth deformation theory, Tohoku Math. J., Tome 48 (1996), pp. 317-354 | Article | MR 1404507 | Zbl 0876.14007
[16] Logarithmic structures of Fontaine-Illusie, Algebraic analysis, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD, (Baltimore, MD, 1988) (1989), pp. 191-224 | MR 1463703 | Zbl 0776.14004
[17] Kawamata-Viehweg vanishing as Kodaira vanishing for stacks, Math. Res. Letters, Tome 12 (2005), pp. 207-217 | MR 2150877 | Zbl 1080.14023
[18] Logarithmic geometry and algebraic stacks, book in preparation (2008)
[19] Logarithmic geometry and algebraic stacks, Ann. Sci. d’ENS, Tome 36 (2003), pp. 747-791 | Numdam | MR 2032986 | Zbl 1069.14022
[20] Universal log structures on semi-stable varieties, Tohoku Math. J., Tome 55 (2003), pp. 397-438 | Article | MR 1993863 | Zbl 1069.14015
[21] On proper coverings of Artin stacks, Adv. Math., Tome 198 (2005), pp. 93-106 | Article | MR 2183251 | Zbl 1084.14004
[22] On (log) twisted curves, Comp. Math., Tome 143 (2007), pp. 476-494 | MR 2309994 | Zbl 1138.14017