Nous étudions les -extensions dans un groupe classique -adique et obtenons une relation entre certaines -extensions à l’aide d’une représentation de Weil. Nous en donnons une application à l’étude des points de réductibilité de certaines induites paraboliques.
We study -extensions in a -adic classical group and we produce a relation between some -extensions by means of a Weil representation. We apply this to the study of reducibility points of some parabolically induced representations.
@article{AIF_2012__62_4_1319_0, author = {Blondel, Corinne}, title = {Repr\'esentation de Weil et $\beta $-extensions}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {1319-1366}, doi = {10.5802/aif.2724}, zbl = {1263.22010}, mrnumber = {3025745}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_4_1319_0} }
Blondel, Corinne. Représentation de Weil et $\beta $-extensions. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1319-1366. doi : 10.5802/aif.2724. http://gdmltest.u-ga.fr/item/AIF_2012__62_4_1319_0/
[1] Algèbres de Hecke et séries principales généralisées de , Proc. London Math. Soc., Tome 85(3) (2002), pp. 659-685 | Article | MR 1936816 | Zbl 1017.22010
[2] Sp(2N)-covers for self-contragredient supercuspidal representations of GL(N), Ann. scient. Ec. Norm. Sup., Tome 37 (2004), pp. 533-558 | Numdam | MR 2097892 | Zbl 1063.22016
[3] Covers and propagation in symplectic groups, Univ. Aarhus (Functional analysis IX, Various Publ. Ser. (Aarhus)) Tome 48 (2007), pp. 16-31 | MR 2349437 | Zbl 1139.22013
[4] Genericity of supercuspidal representations of -adic , Compositio Math., Tome 145(1) (2009), pp. 213-246 | Article | MR 2480501 | Zbl 1217.22013
[5] The admissible dual of via compact open subgroups, Annals of Mathematics Studies 129, Princeton (1993) | MR 1204652 | Zbl 0787.22016
[6] Smooth representations of reductive -adic groups : structure theory via types, Proc. London Math. Soc., Tome 77 (1998), pp. 582-634 | Article | MR 1643417 | Zbl 0911.22014
[7] Semisimple types in , Compositio Math., Tome 119 (1999), pp. 53-97 | Article | MR 1711578 | Zbl 0933.22027
[8] The Local Langlands Conjecture for , Int. Math. Res. Not., Tome 2010 (2010), pp. 2987-3038 | MR 2673717 | Zbl 1239.11061
[9] Weil representations associated to finite fields, J. of Algebra, Tome 46 (1977), pp. 54-101 | Article | MR 460477 | Zbl 0359.20008
[10] Covers for self-dual supercuspidal representations of the Siegel Levi subgroup of classical p-adic groups, Int. Math. Res. Not., Tome 2007 (2007) | MR 2376206 | Zbl 1133.22010
[11] Induced cuspidal representations and generalised Hecke rings, Invent. Math., Tome 58 (1980), pp. 37-64 | Article | MR 570873 | Zbl 0435.20023
[12] Discrete series for -adic and restrictions of representations of (to appear in Canadian Journal of Mathematics (2011)) | Zbl 1219.22016
[13] Level zero Hecke algebras and parabolic induction : the Siegel case for split classical groups, Int. Math. Res. Not., Tome 2006 (2006) | MR 2276353 | Zbl 1115.22013
[14] Normalisation des opérateurs d’entrelacement et réductibilité des induites de cuspidales ; le cas des groupes classiques p-adiques, Ann. of Math., Tome 151 (2000), pp. 817-847 | Article | MR 1765711 | Zbl 0956.22012
[15] Tamely ramified intertwining algebras, Ann. of Math., Tome 114 (1993), pp. 1-54 | MR 1235019 | Zbl 0854.22022
[16] An explicit construction of the metaplectic representation over a finite field, J. of Lie Theory, Tome 12 (2002), pp. 15-30 | MR 1885034 | Zbl 1026.22018
[17] A proof of Langlands conjecture on Plancherel measure ; complementary series for p-adic groups, Ann. of Math., Tome 132 (1990), pp. 273-330 | Article | MR 1070599 | Zbl 0780.22005
[18] Special representations of reductive p-adic groups are not integrable, Ann. of Math., Tome 111 (1980), pp. 571-587 | Article | MR 577138 | Zbl 0437.22015
[19] Double coset decomposition and intertwining, manuscripta math., Tome 106 (2001), pp. 349-364 | Article | MR 1869226 | Zbl 0988.22008
[20] Semisimple characters for -adic classical groups, Duke Math. J., Tome 127(1) (2005), pp. 123-173 | Article | MR 2126498 | Zbl 1063.22018
[21] The supercuspidal representations of -adic classical groups, Invent. Math., Tome 172 (2008), pp. 289-352 | Article | MR 2390287 | Zbl 1140.22016
[22] Weil representations of the symplectic group, J. of Algebra, Tome 208 (1998), pp. 662-686 | Article | MR 1655472 | Zbl 0932.20047
[23] Discrete series of classical groups, Canad. J. Math., Tome 52(5) (2000), pp. 1101-1120 | Article | MR 1782340 | Zbl 0961.22013