An example of an asymptotically Chow unstable manifold with constant scalar curvature
[Un exemple de variété à courbure scalaire constante asymptotiquement instable au sens de Chow]
Ono, Hajime ; Sano, Yuji ; Yotsutani, Naoto
Annales de l'Institut Fourier, Tome 62 (2012), p. 1265-1287 / Harvested from Numdam

Donaldson a prouvé que, si une variété polarisée (V,L) admet une métrique kählérienne à courbure scalaire constante dans c 1 (L), et si son groupe d’automorphismes Aut(V,L) est discret, alors (V,L) est asymptotiquement stable au sens de Chow. Dans cet article, nous allons montrer un exemple qui implique que le résultat ci-dessus ne s’étend pas au cas où Aut(V,L) n’est pas discret.

Donaldson proved that if a polarized manifold (V,L) has constant scalar curvature Kähler metrics in c 1 (L) and its automorphism group Aut(V,L) is discrete, (V,L) is asymptotically Chow stable. In this paper, we shall show an example which implies that the above result does not hold in the case where Aut(V,L) is not discrete.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/aif.2722
Classification:  53C55,  53C21,  55N91
Mots clés: stabilité asymptotique au sens de Chow, métrique kählérienne à courbure scalaire contsante, variété de Fano torique, invariant de Futaki
@article{AIF_2012__62_4_1265_0,
     author = {Ono, Hajime and Sano, Yuji and Yotsutani, Naoto},
     title = {An example of an asymptotically Chow unstable manifold  with constant scalar curvature},
     journal = {Annales de l'Institut Fourier},
     volume = {62},
     year = {2012},
     pages = {1265-1287},
     doi = {10.5802/aif.2722},
     zbl = {1255.53057},
     mrnumber = {3025743},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2012__62_4_1265_0}
}
Ono, Hajime; Sano, Yuji; Yotsutani, Naoto. An example of an asymptotically Chow unstable manifold  with constant scalar curvature. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1265-1287. doi : 10.5802/aif.2722. http://gdmltest.u-ga.fr/item/AIF_2012__62_4_1265_0/

[1] Arezzo, Claudio; Loi, Andrea Moment maps, scalar curvature and quantization of Kähler manifolds, Comm. Math. Phys., Tome 246 (2004) no. 3, pp. 543-559 | Article | MR 2053943 | Zbl 1062.32021

[2] Batyrev, Victor V.; Selivanova, Elena N. Einstein-Kähler metrics on symmetric toric Fano manifolds, J. Reine Angew. Math., Tome 512 (1999), pp. 225-236 | Article | MR 1703080 | Zbl 0939.32016

[3] Donaldson, S. K. Scalar curvature and projective embeddings. I, J. Differential Geom., Tome 59 (2001) no. 3, pp. 479-522 http://projecteuclid.org/getRecord?id=euclid.jdg/1090349449 | MR 1916953 | Zbl 1052.32017

[4] Donaldson, S. K. Scalar curvature and stability of toric varieties, J. Differential Geom., Tome 62 (2002) no. 2, pp. 289-349 http://projecteuclid.org/getRecord?id=euclid.jdg/1090950195 | MR 1988506 | Zbl 1074.53059

[5] Futaki, A. An obstruction to the existence of Einstein Kähler metrics, Invent. Math., Tome 73 (1983) no. 3, pp. 437-443 | Article | MR 718940 | Zbl 0506.53030

[6] Futaki, A. Kähler-Einstein metrics and integral invariants, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1314 (1988) | MR 947341 | Zbl 0646.53045

[7] Futaki, A. Asymptotic Chow semi-stability and integral invariants, Internat. J. Math., Tome 15 (2004) no. 9, pp. 967-979 | Article | MR 2106156 | Zbl 1074.53060

[8] Futaki, A.; Morita, S. Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geom., Tome 21 (1985) no. 1, pp. 135-142 http://projecteuclid.org/getRecord?id=euclid.jdg/1214439469 | MR 806707 | Zbl 0598.53055

[9] Futaki, A.; Ono, H.; Sano, Y. Hilbert series and obstructions to asymptotic semistability, Adv. Math., Tome 226 (2011) no. 1, pp. 254-284 | Article | MR 2735758 | Zbl 1209.53059

[10] Mabuchi, Toshiki An obstruction to asymptotic semistability and approximate critical metrics, Osaka J. Math., Tome 41 (2004) no. 2, pp. 463-472 http://projecteuclid.org/getRecord?id=euclid.ojm/1153493522 | MR 2069096 | Zbl 1070.58012

[11] Mabuchi, Toshiki An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds. I, Invent. Math., Tome 159 (2005) no. 2, pp. 225-243 | Article | MR 2116275 | Zbl 1118.53047

[12] Miller, Ezra; Sturmfels, Bernd Combinatorial commutative algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 227 (2005) | MR 2110098 | Zbl 1090.13001

[13] Mumford, D.; Fogarty, J.; Kirwan, F. Geometric invariant theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], Tome 34 (1994) | MR 1304906 | Zbl 0797.14004

[14] Nill, B.; Paffenholz, A. Examples of non-symmetric Kähler-Einstein toric Fano manifolds (http://arxiv.org/abs/0905.2054)

[15] Oda, Tadao Convex bodies and algebraic geometry, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 15 (1988) (An introduction to the theory of toric varieties, Translated from the Japanese) | MR 922894 | Zbl 0628.52002

[16] Ono, H. A necessary condition for Chow semistability of polarized toric manifolds, J. Math. Soc., Japan, Tome 63 (2011) no. 4, pp. 1377-1389 | Article | MR 2855816 | Zbl 1230.14069

[17] Tian, Gang Kähler-Einstein metrics with positive scalar curvature, Invent. Math., Tome 130 (1997) no. 1, pp. 1-37 | Article | MR 1471884 | Zbl 0892.53027

[18] Wang, Xu-Jia; Zhu, Xiaohua Kähler-Ricci solitons on toric manifolds with positive first Chern class, Adv. Math., Tome 188 (2004) no. 1, pp. 87-103 | Article | MR 2084775 | Zbl 1086.53067

[19] Yau, Shing Tung Calabi’s conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. U.S.A., Tome 74 (1977) no. 5, p. 1798-1799 | Article | MR 451180 | Zbl 0355.32028

[20] Yau, Shing-Tung Perspectives on geometric analysis, Surveys in differential geometry. Vol. X, Int. Press, Somerville, MA (Surv. Differ. Geom.) Tome 10 (2006), pp. 275-379 | MR 2408227 | Zbl 1138.53004