Nous étudions une variante des frises de Coxeter-Conway appelée 2-frises. La réalisation géométrique de l’espace des 2-frises est l’espace des modules de polygones, dans le plan projectif ou dans l’espace vectoriel de dimension 3, qui est un analogue de l’espace des modules des courbes de genre 0 avec points marqués. Nous montrons que l’espace des 2-frises admet une structure de variété amassée et nous en étudions les propriétés algébriques et arithmétiques.
We study 2-frieze patterns generalizing that of the classical Coxeter-Conway frieze patterns. The geometric realization of this space is the space of -gons (in the projective plane and in 3-dimensional vector space) which is a close relative of the moduli space of genus curves with marked points. We show that the space of 2-frieze patterns is a cluster manifold and study its algebraic and arithmetic properties.
@article{AIF_2012__62_3_937_0, author = {Morier-Genoud, Sophie and Ovsienko, Valentin and Tabachnikov, Serge}, title = {2-frieze patterns and the cluster structure of the space of polygons}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {937-987}, doi = {10.5802/aif.2713}, zbl = {pre06093169}, mrnumber = {3013813}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_937_0} }
Morier-Genoud, Sophie; Ovsienko, Valentin; Tabachnikov, Serge. 2-frieze patterns and the cluster structure of the space of polygons. Annales de l'Institut Fourier, Tome 62 (2012) pp. 937-987. doi : 10.5802/aif.2713. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_937_0/
[1] Gaudin subalgebras and stable rational curves (arXiv:1004.3253)
[2] -Tiling of the Plane, Illinois J. Math., Tome 54 (2010), pp. 263-300 | MR 2776996
[3] Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv., Tome 81 (2006), pp. 595-616 | Article | MR 2250855
[4]
(Unpublished notes)[5] Triangulated polygons and frieze patterns, Math. Gaz., Tome 57 (1973), p. 87-94 and 175–183 | Article | MR 461269 | Zbl 0288.05021
[6] Frieze patterns, Acta Arith., Tome 18 (1971), pp. 297-310 | MR 286771 | Zbl 0217.18101
[7] The solution of the T-system for arbitrary boundary, Electron. J. Combin., Tome 17 (2010) no. 1 (Research Paper 89, 43 pp) | MR 2661392
[8] Positivity of the -system cluster algebra, Electron. J. Combin., Tome 16 (2009) | MR 2577308
[9] -systems as cluster algebras. II. Cartan matrix of finite type and the polynomial property, Lett. Math. Phys., Tome 89 (2009), pp. 183-216 | Article | MR 2551179
[10] Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Etudes Sci., Tome 103 (2006), pp. 1-211 | Numdam | MR 2233852 | Zbl 1099.14025
[11] Moduli spaces of convex projective structures on surfaces, Adv. Math., Tome 208 (2007), pp. 249-273 | Article | MR 2304317 | Zbl 1111.32013
[12] Cluster algebras. I. Foundations, J. Amer. Math. Soc., Tome 15 (2002), pp. 497-529 | Article | MR 1887642 | Zbl 1021.16017
[13] The Laurent phenomenon, Adv. in Appl. Math., Tome 28 (2002), pp. 119-144 | Article | MR 1888840 | Zbl 1012.05012
[14] Cluster algebras. IV. Coefficients, Compos. Math., Tome 143 (2007), pp. 112-164 | Article | MR 2295199 | Zbl 1127.16023
[15] Cluster algebras and Poisson geometry, Amer. Math. Soc., Providence, RI (2010) | MR 2683456 | Zbl 1217.13001
[16] The pentagram map and Y-patterns (Adv. Math, to appear, arXiv:1005.0598) | MR 2793031 | Zbl 1355.51007 | Zbl 1229.05021
[17] A periodicity theorem for the octahedron recurrence, J. Algebraic Combin., Tome 26 (2007) no. 1, pp. 1-26 | Article | MR 2335700 | Zbl 1125.05106
[18] The periodicity conjecture for pairs of Dynkin diagrams (arXiv:1001.1880) | MR 2999039 | Zbl 1320.17007
[19] Poisson groups and differential Galois theory of Schroedinger equation on the circle, Comm. Math. Phys., Tome 284 (2008), pp. 537-552 | Article | MR 2448140 | Zbl 1165.37029
[20] Liouville-Arnold integrability of the pentagram map on closed polygons (preprint) | MR 3102478 | Zbl 1315.37035
[21] The Pentagram map: a discrete integrable system, Comm. Math. Phys., Tome 299 (2010), pp. 409-446 | Article | MR 2679816 | Zbl 1209.37063
[22] Projective differential geometry old and new. From the Schwarzian derivative to the cohomology of diffeomorphism groups, Cambridge University Press, Cambridge (2005) | MR 2177471 | Zbl 1073.53001
[23] The combinatorics of frieze patterns and Markoff numbers (arXiv:math/0511633)
[24] The pentagram map, Experimental Math., Tome 1 (1992), pp. 71-81 | MR 1181089 | Zbl 0765.52004
[25] Discrete monodromy, pentagrams, and the method of condensation, J. Fixed Point Theory Appl., Tome 3 (2008), pp. 379-409 | Article | MR 2434454 | Zbl 1148.51001
[26] Grassmannians and cluster algebras, Proc. London Math. Soc., Tome 92 (2006), pp. 345-380 | Article | MR 2205721 | Zbl 1088.22009
[27] Integrability of the Pentagram Map (arXiv:1106.3950) | MR 3161305 | Zbl 1282.14061
[28] Variations on R. Schwartz’s inequality for the Schwarzian derivative (Discr. Comput. Geometry, in print, arXiv:1006.1339) | MR 2846176 | Zbl 1243.52006
[29] The On-Line Encyclopedia of Integer Sequences (http://www.research.att.com/ njas/sequences)
[30] On the periodicity conjecture for -systems, Comm. Math. Phys., Tome 276 (2007), pp. 509-517 | Article | MR 2346398 | Zbl 1136.82011