Considérons une homéomorphisme sans points fixes sur la bande fermé qui laisse un feuilletage de Reeb invariant et qui est le temps un des flots topologiques. Nous comparons les restrictions de plusieurs tels flots au bord de .
We consider a fixed point free homeomorphism of the closed band which leaves each leaf of a Reeb foliation on invariant. Assuming is the time one of various topological flows, we compare the restriction of the flows on the boundary.
@article{AIF_2012__62_3_887_0, author = {Matsumoto, Shigenori}, title = {Flows of flowable Reeb homeomorphisms}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {887-897}, doi = {10.5802/aif.2711}, zbl = {pre06093167}, mrnumber = {3013811}, zbl = {1350.37049}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_887_0} }
Matsumoto, Shigenori. Flows of flowable Reeb homeomorphisms. Annales de l'Institut Fourier, Tome 62 (2012) pp. 887-897. doi : 10.5802/aif.2711. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_887_0/
[1] Beweis des Ebenen Translationssatzes, Math. Ann., Tome 72 (1912) no. 1, pp. 37-54 | Article | JFM 43.0569.02 | MR 1511684
[2] Ensemble oscillant d’un homéomorphisme de Brouwer, homéomorphismes de Reeb, Bull. Soc. Math. France, Tome 131 (2003) no. 2, pp. 149-210 | Numdam | MR 1988946 | Zbl 1026.37033
[3] Sur le groupe des transformations topologiques du plan, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2), Tome 3 (1934) no. 3-4, pp. 393-400 | JFM 60.0521.02 | Numdam | MR 1556737 | Zbl 0010.03902
[4] An orbit closing proof of Brouwer’s lemma on translation arcs, Enseign. Math. (2), Tome 33 (1987) no. 3-4, pp. 315-322 | MR 925994 | Zbl 0649.54022
[5] A new proof of the Brouwer plane translation theorem, Ergodic Theory Dynam. Systems, Tome 12 (1992) no. 2, pp. 217-226 | Article | MR 1176619 | Zbl 0767.58025
[6] Théorème de translation plane de Brouwer et généralisations du théorème de Poincaré-Birkhoff, Topology, Tome 33 (1994) no. 2, pp. 331-351 | Article | MR 1273787 | Zbl 0924.55001
[7] Variétés (non séparées) à une dimension et structures feuilletées du plan, Enseignement Math. (2), Tome 3 (1957), pp. 107-125 | MR 89412 | Zbl 0079.17101
[8] On the structure of the plane translation of Brouwer, Osaka Math. J., Tome 5 (1953), pp. 233-266 | MR 58963 | Zbl 0050.17804 | Zbl 0051.14701
[9] Flowability of plane homeomorphisms (Preprints in Arxiv) | MR 2985511 | Zbl 1296.37032
[10] Classes de conjugaison des flots du plan topologiquement équivalents au flot de Reeb, C. R. Acad. Sci. Paris Sér. I Math., Tome 328 (1999) no. 1, pp. 45-50 | Article | MR 1674425 | Zbl 0922.58069
[11] A non-flowable plane homeomorphism whose non-Hausdorff set consists of two disjoint lines, Houston J. Math., Tome 21 (1995) no. 3, pp. 569-572 | MR 1352607 | Zbl 0857.54040