Soit un espace riemannien symétrique de type non-compact. On montre que la solution de l’équation de Schrödinger dépendante du temps sur , avec condition initiale de carré intégrable , est nulle en tout temps lorsque et la solution à un temps donné sont simultanément très rapidement décroissantes. La condition de décroissance rapide considérée est de type Beurling. Des conditions respectivement de types Gelfand-Shilov, Cowling-Price et Hardy en sont déduites.
Let be a Riemannian symmetric space of the noncompact type. We prove that the solution of the time-dependent Schrödinger equation on with square integrable initial condition is identically zero at all times whenever and the solution at a time are simultaneously very rapidly decreasing. The stated condition of rapid decrease is of Beurling type. Conditions respectively of Gelfand-Shilov, Cowling-Price and Hardy type are deduced.
@article{AIF_2012__62_3_859_0, author = {Pasquale, Angela and Sundari, Maddala}, title = {Uncertainty principles for the Schr\"odinger equation on Riemannian symmetric spaces of the noncompact type}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {859-886}, doi = {10.5802/aif.2710}, zbl = {1253.43007}, mrnumber = {3013810}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_859_0} }
Pasquale, Angela; Sundari, Maddala. Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type. Annales de l'Institut Fourier, Tome 62 (2012) pp. 859-886. doi : 10.5802/aif.2710. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_859_0/
[1] A basic inequality for scattering theory on Riemannian symmetric spaces of the noncompact type, Amer. J. Math., Tome 113 (1991) no. 3, pp. 391-398 | Article | MR 1109344 | Zbl 0735.53036
[2] Uncertainty principles like Hardy’s theorem on some Lie groups, J. Austral. Math. Soc., Tome 65 (1998) no. 3, pp. 289-302 | Article | MR 1660417 | Zbl 0930.22009
[3] Uniqueness of solutions to the Schrödinger equation on the Heisenberg group (2010) (arXiv:1006.5310)
[4] Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana, Tome 19 (2003) no. 1, pp. 23-55 | Article | MR 1993414
[5] Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups, Proc. Indian Acad. Sci. Math. Sci., Tome 117 (2007) no. 3, pp. 325-331 | Article | MR 2352052
[6] The Hardy uncertainty principle revisited (arXiv:1005.1543v1, to appear in Indiana Univ. Math. J., 59 (2010)) | MR 2919746
[7] On the Radon transform of the rapidly decreasing functions on symmetric spaces. II., Hiroshima Math. J., Tome 1 (1971), pp. 161-169 | MR 312434 | Zbl 0264.43019
[8] Some properties of Fourier transform on Riemannian symmetric spaces, Lectures on harmonic analysis on Lie groups and other topics (Strasbourg, 1979), Kyoto Univ. (Lecture Notes in Mathematics) Tome 14 (1982), pp. 9-43 | MR 683464 | Zbl 0544.43005
[9] Hardy’s uncertainty principle, convexity and Schrödinger evolutions, J. Euro. Math. Soc., Tome 10 (2008), pp. 883-907 | Article | MR 2443923
[10] The sharp Hardy uncertainty principle for Schrödinger evolutions, Duke Math. J., Tome 155 (2010) no. 1, pp. 163-187 | Article | MR 2730375
[11] Uncertainty principles of Morgan type and Schrödinger evolutions, J. London Math. Soc., Tome 83 (2011) no. 1, pp. 187-207 | Article | MR 2763951
[12] Harmonic analysis of spherical functions on real reductive groups, Springer Verlag (1988) | MR 954385 | Zbl 0675.43004
[13] Differential geometry, Lie groups, and symmetric spaces, Academic Press (1978) | MR 514561 | Zbl 0451.53038
[14] Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Academic Press (1984) | MR 754767 | Zbl 0543.58001
[15] Geometric analysis on symmetric spaces, American Mathematical Society, Mathematical Surveys and Monographs, Tome 39 (2008) | MR 2463854 | Zbl 0809.53057
[16] The analysis of linear partial differential operators. I, Springer Verlag (1990) | MR 1065993 | Zbl 0712.35001
[17] A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat., Tome 29 (1991) no. 2, pp. 237-240 | Article | MR 1150375 | Zbl 0755.42009
[18] Uniqueness properties of solutions of Schrödinger equations, J. Funct. Anal., Tome 232 (2006), pp. 90-136 | Article | MR 2200168
[19] Partial differential equations, Springer-Verlag (1991) | MR 1223093 | Zbl 0742.35001
[20] Beurling’s theorem and characterization of heat kernel for Riemannian symmetric spaces of noncompact type, Canad. Math. Bull. (2007) no. 2, pp. 291-312 | Article | MR 2317450
[21] Beurling’s theorem for Riemannian symmetric spaces. II, Proc. Amer. Math. Soc., Tome 136 (2008) no. 2, pp. 1841-1853 | MR 2373616
[22] Théorie des distributions, Hermann, Paris (1966) | MR 209834 | Zbl 0149.09501
[23] The uncertainty principle on Riemannian symmetric spaces of the noncompact type, Proc. Amer. Math. Soc., Tome 128 (2000) no. 8, pp. 2493-2499 | Article | MR 1873774
[24] An analogue of Hardy’s theorem for semi-simple Lie groups, Proc. Amer. Math. Soc., Tome 130 (2002) no. 4, pp. 1009-1017 | Article | MR 1654100
[25] An introduction to the uncertainty principle. Hardy’s theorem on Lie groups, Birkhäuser (2004) | MR 2008480