Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type
[Principes d’incertitude pour l’équation de Schrödinger sur les espaces riemanniens symétriques de type non-compact]
Pasquale, Angela ; Sundari, Maddala
Annales de l'Institut Fourier, Tome 62 (2012), p. 859-886 / Harvested from Numdam

Soit X un espace riemannien symétrique de type non-compact. On montre que la solution de l’équation de Schrödinger dépendante du temps sur X, avec condition initiale de carré intégrable f, est nulle en tout temps t lorsque f et la solution à un temps t 0 >0 donné sont simultanément très rapidement décroissantes. La condition de décroissance rapide considérée est de type Beurling. Des conditions respectivement de types Gelfand-Shilov, Cowling-Price et Hardy en sont déduites.

Let X be a Riemannian symmetric space of the noncompact type. We prove that the solution of the time-dependent Schrödinger equation on X with square integrable initial condition f is identically zero at all times t whenever f and the solution at a time t 0 >0 are simultaneously very rapidly decreasing. The stated condition of rapid decrease is of Beurling type. Conditions respectively of Gelfand-Shilov, Cowling-Price and Hardy type are deduced.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/aif.2710
Classification:  43A85,  58Jxx
Mots clés: principe d’incertitude, équation de Schrödinger, transformée de Helgason-Fourier, théorème de Beurling, théorème de Hardy
@article{AIF_2012__62_3_859_0,
     author = {Pasquale, Angela and Sundari, Maddala},
     title = {Uncertainty principles for the Schr\"odinger equation on Riemannian symmetric spaces of the noncompact type},
     journal = {Annales de l'Institut Fourier},
     volume = {62},
     year = {2012},
     pages = {859-886},
     doi = {10.5802/aif.2710},
     zbl = {1253.43007},
     mrnumber = {3013810},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_859_0}
}
Pasquale, Angela; Sundari, Maddala. Uncertainty principles for the Schrödinger equation on Riemannian symmetric spaces of the noncompact type. Annales de l'Institut Fourier, Tome 62 (2012) pp. 859-886. doi : 10.5802/aif.2710. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_859_0/

[1] Anker, Jean-Philippe A basic inequality for scattering theory on Riemannian symmetric spaces of the noncompact type, Amer. J. Math., Tome 113 (1991) no. 3, pp. 391-398 | Article | MR 1109344 | Zbl 0735.53036

[2] Bagchi, S. C.; Ray, Swagato K. Uncertainty principles like Hardy’s theorem on some Lie groups, J. Austral. Math. Soc., Tome 65 (1998) no. 3, pp. 289-302 | Article | MR 1660417 | Zbl 0930.22009

[3] Ben Said, Salem; Thangavelu, Sundaram Uniqueness of solutions to the Schrödinger equation on the Heisenberg group (2010) (arXiv:1006.5310)

[4] Bonami, Aline; Demange, Bruno; Jaming, Philippe Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoamericana, Tome 19 (2003) no. 1, pp. 23-55 | Article | MR 1993414

[5] Chanillo, Sagun Uniqueness of solutions to Schrödinger equations on complex semi-simple Lie groups, Proc. Indian Acad. Sci. Math. Sci., Tome 117 (2007) no. 3, pp. 325-331 | Article | MR 2352052

[6] Cowling, Michael G.; Escauriaza, Luis; Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis The Hardy uncertainty principle revisited (arXiv:1005.1543v1, to appear in Indiana Univ. Math. J., 59 (2010)) | MR 2919746

[7] Eguchi, Masaaki On the Radon transform of the rapidly decreasing functions on symmetric spaces. II., Hiroshima Math. J., Tome 1 (1971), pp. 161-169 | MR 312434 | Zbl 0264.43019

[8] Eguchi, Masaaki; Hirai, T.; Schiffmann, G. Some properties of Fourier transform on Riemannian symmetric spaces, Lectures on harmonic analysis on Lie groups and other topics (Strasbourg, 1979), Kyoto Univ. (Lecture Notes in Mathematics) Tome 14 (1982), pp. 9-43 | MR 683464 | Zbl 0544.43005

[9] Escauriaza, Luis; Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis Hardy’s uncertainty principle, convexity and Schrödinger evolutions, J. Euro. Math. Soc., Tome 10 (2008), pp. 883-907 | Article | MR 2443923

[10] Escauriaza, Luis; Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis The sharp Hardy uncertainty principle for Schrödinger evolutions, Duke Math. J., Tome 155 (2010) no. 1, pp. 163-187 | Article | MR 2730375

[11] Escauriaza, Luis; Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis Uncertainty principles of Morgan type and Schrödinger evolutions, J. London Math. Soc., Tome 83 (2011) no. 1, pp. 187-207 | Article | MR 2763951

[12] Gangolli, Ramesh; Varadarajan, V. S. Harmonic analysis of spherical functions on real reductive groups, Springer Verlag (1988) | MR 954385 | Zbl 0675.43004

[13] Helgason, Sigurdur Differential geometry, Lie groups, and symmetric spaces, Academic Press (1978) | MR 514561 | Zbl 0451.53038

[14] Helgason, Sigurdur Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Academic Press (1984) | MR 754767 | Zbl 0543.58001

[15] Helgason, Sigurdur Geometric analysis on symmetric spaces, American Mathematical Society, Mathematical Surveys and Monographs, Tome 39 (2008) | MR 2463854 | Zbl 0809.53057

[16] Hörmander, Lars The analysis of linear partial differential operators. I, Springer Verlag (1990) | MR 1065993 | Zbl 0712.35001

[17] Hörmander, Lars A uniqueness theorem of Beurling for Fourier transform pairs, Ark. Mat., Tome 29 (1991) no. 2, pp. 237-240 | Article | MR 1150375 | Zbl 0755.42009

[18] Ionescu, I. D.; Kenig, Carlos E. Uniqueness properties of solutions of Schrödinger equations, J. Funct. Anal., Tome 232 (2006), pp. 90-136 | Article | MR 2200168

[19] Rauch, Jeffrey Partial differential equations, Springer-Verlag (1991) | MR 1223093 | Zbl 0742.35001

[20] Sarkar, Rudra P.; Sengupta, Jyoti Beurling’s theorem and characterization of heat kernel for Riemannian symmetric spaces of noncompact type, Canad. Math. Bull. (2007) no. 2, pp. 291-312 | Article | MR 2317450

[21] Sarkar, Rudra P.; Sengupta, Jyoti Beurling’s theorem for Riemannian symmetric spaces. II, Proc. Amer. Math. Soc., Tome 136 (2008) no. 2, pp. 1841-1853 | MR 2373616

[22] Schwartz, Laurent Théorie des distributions, Hermann, Paris (1966) | MR 209834 | Zbl 0149.09501

[23] Sengupta, Joyti The uncertainty principle on Riemannian symmetric spaces of the noncompact type, Proc. Amer. Math. Soc., Tome 128 (2000) no. 8, pp. 2493-2499 | Article | MR 1873774

[24] Sengupta, Joyti An analogue of Hardy’s theorem for semi-simple Lie groups, Proc. Amer. Math. Soc., Tome 130 (2002) no. 4, pp. 1009-1017 | Article | MR 1654100

[25] Thangavelu, Sundaram An introduction to the uncertainty principle. Hardy’s theorem on Lie groups, Birkhäuser (2004) | MR 2008480