Un résultat classique de Boole montre que, sur un corps de caractéristique 0, l’ensemble des hypersurfaces singulières de degré dans est un diviseur de degré de l’espace projectif de toutes les hypersurfaces. On obtient ici des formules analogues pour des intersections complètes de codimension et de degrés quelconques dans , en toute caractéristique.
A classical result of Boole shows that, in characteristic , the set of singular degree hypersurfaces in is a divisor of degree in the projective space of all hypersurfaces. We give here analogous formulae for complete intersections in of arbitrary codimension and degrees, in any characteristic.
@article{AIF_2012__62_3_1189_0, author = {Benoist, Olivier}, title = {Degr\'es d'homog\'en\'eit\'e de l'ensemble des intersections compl\`etes singuli\`eres}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {1189-1214}, doi = {10.5802/aif.2720}, zbl = {1254.14061}, mrnumber = {3013820}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_1189_0} }
Benoist, Olivier. Degrés d’homogénéité de l’ensemble des intersections complètes singulières. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1189-1214. doi : 10.5802/aif.2720. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_1189_0/
[1] An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. Reine Angew. Math., Tome 482 (1997), pp. 67-92 | MR 1427657 | Zbl 0862.14006
[2] Groupes de monodromie en géométrie algébrique. II, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 340 (1973) (Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 II)) | MR 354657
[3] Discriminants, resultants, and multidimensional determinants, Birkhäuser Boston Inc., Boston, MA, Mathematics : Theory & Applications (1994) | Article | MR 1264417 | Zbl 0827.14036
[4] Tangency and duality, Proceedings of the 1984 Vancouver conference in algebraic geometry, Amer. Math. Soc., Providence, RI (CMS Conf. Proc.) Tome 6 (1986), pp. 163-225 | MR 846021 | Zbl 0601.14046
[5] Combinatorial commutative algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 227 (2005) | MR 2110098
[6] Convex bodies and algebraic geometry, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 15 (1988) (An introduction to the theory of toric varieties, Translated from the Japanese) | MR 922894 | Zbl 0628.52002
[7] Polynomials, Springer-Verlag, Berlin, Algorithms and Computation in Mathematics, Tome 11 (2004) (Translated from the 2001 Russian second edition by Dimitry Leites) | MR 2082772
[8] Tangency and duality over arbitrary fields, Proc. London Math. Soc. (3), Tome 6 (1956), pp. 321-342 | Article | MR 80354 | Zbl 0072.16002