Nous étudions l’effilement minimal dans le demi-espace pour une classe grande de mouvements brownien subordonnés. Nous montrons que le même test pour l’effilement minimal d’un sous-ensemble sous le graphe d’une fonction non-négative lipschitzienne est valable pour tous les processus dans la classe considérée. Dans le cas classique du mouvement brownien ce test a été démontré par Burdzy.
We study minimal thinness in the half-space for a large class of subordinate Brownian motions. We show that the same test for the minimal thinness of a subset of below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.
@article{AIF_2012__62_3_1045_0, author = {Kim, Panki and Song, Renming and Vondra\v cek, Zoran}, title = {Minimal thinness for subordinate Brownian motion in half-space}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {1045-1080}, doi = {10.5802/aif.2716}, zbl = {1273.60096}, mrnumber = {3013816}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_1045_0} }
Kim, Panki; Song, Renming; Vondraček, Zoran. Minimal thinness for subordinate Brownian motion in half-space. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1045-1080. doi : 10.5802/aif.2716. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_1045_0/
[1] Classical potential theory, Springer-Verlag London Ltd., London, Springer Monographs in Mathematics (2001) | MR 1801253
[2] Lévy processes, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 121 (1996) | MR 1406564 | Zbl 0861.60003
[3] A minimum principle for positive harmonic functions, Ann. Acad. Sci. Fenn. Ser. A I No., Tome 372 (1965), pp. 7 | MR 188466 | Zbl 0139.06402
[4] Regular variation, Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications, Tome 27 (1987) | MR 898871 | Zbl 0667.26003
[5] Potential theory. An analytic and probabilistic approach to balayage, Springer-Verlag, Berlin, Universitext (1986) | MR 850715 | Zbl 0706.31001
[6] The boundary Harnack principle for the fractional Laplacian, Studia Math., Tome 123 (1997) no. 1, pp. 43-80 | MR 1438304 | Zbl 0870.31009
[7] Representation of -harmonic functions in Lipschitz domains, Hiroshima Math. J., Tome 29 (1999) no. 2, pp. 227-243 http://projecteuclid.org/getRecord?id=euclid.hmj/1206125005 | MR 1704245 | Zbl 0936.31008
[8] Potential analysis of stable processes and its extensions, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1980 (2009) (Edited by Piotr Graczyk and Andrzej Stos) | Article | MR 2569321
[9] Brownian excursions and minimal thinness. I, Ann. Probab., Tome 15 (1987) no. 2, pp. 676-689 http://www.jstor.org/stable/2244068 | Article | MR 885137 | Zbl 0656.60051
[10] Global heat kernel estimate for in half space like open sets, Preprint (2011) | MR 2775111
[11] Boundary Harnack principle , To appear in Trans. Amer. Math. Soc. (2011) | MR 2912450
[12] Sharp Green function estimates for in open sets and their applications, To appear in Illinois J. Math. (2011)
[13] Martin boundary and integral representation for harmonic functions of symmetric stable processes, J. Funct. Anal., Tome 159 (1998) no. 1, pp. 267-294 | Article | MR 1654115 | Zbl 0954.60003
[14] A minimum principle for positive harmonic functions, Proc. London Math. Soc. (3), Tome 33 (1976) no. 2, pp. 238-250 | Article | MR 409847 | Zbl 0342.31004
[15] Classical potential theory and its probabilistic counterpart, Springer-Verlag, New York, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 262 (1984) | MR 731258 | Zbl 0549.31001
[16] Feine Topologie am Martinrand eines Standardprozesses, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, Tome 12 (1969), pp. 127-144 | Article | MR 245092 | Zbl 0172.21601
[17] A short proof of Burdzy’s theorem on the angular derivative, Bull. London Math. Soc., Tome 23 (1991) no. 6, pp. 575-579 | Article | MR 1135189 | Zbl 0718.31005
[18] Boundary behavior of harmonic functions for truncated stable processes, J. Theoret. Probab., Tome 21 (2008) no. 2, pp. 287-321 | Article | MR 2391246
[19] Boundary Harnack principle for subordinate Brownian motions, Stochastic Process. Appl., Tome 119 (2009) no. 5, pp. 1601-1631 | Article | MR 2513121
[20] On the potential theory of one-dimensional subordinate Brownian motions with continuous components, Potential Anal., Tome 33 (2010) no. 2, pp. 153-173 | Article | MR 2658980
[21] Potential theory of subordinate Brownian motions revisited, To appear in a volume in honor of Prof. Jiaan Yan (2011)
[22] Potential theory of subordinate Brownian motions with Gaussian components, Preprint (2011)
[23] Two-sided Green function estimates for killed subordinate Brownian motions, To appear in Proc. London Math. Soc. (2012) | Article
[24] Markov processes and Martin boundaries. I, Illinois J. Math., Tome 9 (1965), pp. 485-526 | MR 181010 | Zbl 0147.16505
[25] Sur le rôle de la frontière de R. S. Martin dans la théorie du potentiel, Ann. Inst. Fourier, Grenoble, Tome 7 (1957), pp. 183-281 | Article | Numdam | MR 100174 | Zbl 0086.30603
[26] Brownian motion and classical potential theory, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1978) (Probability and Mathematical Statistics) | MR 492329 | Zbl 0413.60067
[27] Green function estimates and Harnack inequality for subordinate Brownian motions, Potential Anal., Tome 25 (2006) no. 1, pp. 1-27 | Article | MR 2238934
[28] Bernstein functions, Walter de Gruyter & Co., Berlin, de Gruyter Studies in Mathematics, Tome 37 (2010) (Theory and applications) | MR 2598208
[29] La convolution dans faible de , Séminaire Choquet, 13e année (1973/74), Initiation à l’analyse, Exp. No. 14, Secrétariat Mathématique, Paris (1975), pp. 10 | Numdam | MR 477597 | Zbl 0317.42019
[30] Une propriété des fonctions harmoniques positives, d’après Dahlberg, Séminaire de Théorie du Potentiel de Paris, No. 2 (Univ. Paris, Paris, 1975–1976), Springer, Berlin (1976), p. 275-282. Lecture Notes in Math., Vol. 563 | MR 588344 | Zbl 0339.31005