Soit G un -groupe fini agissant sur une courbe lisse projective sur un corps algébriquement clos de caractéristique . Alors la dimension de l’espace tangent du foncteur de déformations équivariantes associé est égal à la dimension de l’espace de co-invariants de agissant sur l’espace de différentielles holomorphes quadratiques globales sur . On applique des résultats connus sur la structure de module de Galois des espaces Riemann-Roch pour calculer cette dimension dans le cas où est cyclique ou dans le cas où l’action de sur est faiblement ramifiée. De plus, on détermine certaines sous-représentations de , qui s’appellent rang- représentations.
Given a finite -group acting on a smooth projective curve over an algebraically closed field of characteristic , the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of acting on the space of global holomorphic quadratic differentials on . We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when is cyclic or when the action of on is weakly ramified. Moreover we determine certain subrepresentations of , called -rank representations.
@article{AIF_2012__62_3_1015_0, author = {K\"ock, Bernhard and Kontogeorgis, Aristides}, title = {Quadratic Differentials and Equivariant Deformation Theory of Curves}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {1015-1043}, doi = {10.5802/aif.2715}, zbl = {1256.14026}, mrnumber = {3013815}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_1015_0} }
Köck, Bernhard; Kontogeorgis, Aristides. Quadratic Differentials and Equivariant Deformation Theory of Curves. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1015-1043. doi : 10.5802/aif.2715. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_1015_0/
[1] Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math., Tome 141 (2000) no. 1, pp. 195-238 | Article | MR 1767273
[2] A relative Shafarevich theorem, Math. Z., Tome 248 (2004) no. 2, pp. 351-367 | Article | MR 2088933
[3] Cohomology of -sheaves in positive characteristic, Adv. Math., Tome 201 (2006) no. 2, pp. 454-515 | Article | MR 2211535
[4] Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J., Tome 116 (2003) no. 3, pp. 431-470 | Article | MR 1958094
[5] Zur Entartung schwach verzweigter Gruppenoperationen auf Kurven, J. Reine Angew. Math., Tome 589 (2005), pp. 201-236 | Article | MR 2194683
[6] Riemann surfaces, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 71 (1980) | MR 583745 | Zbl 0764.30001
[7] Algebraic geometry, Springer-Verlag, New York, Graduate Texts in Mathematics (1977) no. 52 | MR 463157 | Zbl 0531.14001
[8] On holomorphic polydifferentials in positive characteristic, to appear in Math. Nachr., 25pp (2010) (arXiv:0905.1196v2)
[9] Galois structure of Zariski cohomology for weakly ramified covers of curves, Amer. J. Math., Tome 126 (2004) no. 5, pp. 1085-1107 http://muse.jhu.edu/journals/american_journal_of_mathematics/v126/126.5k"ock.pdf | Article | MR 2089083
[10] On the tangent space of the deformation functor of curves with automorphisms, Algebra Number Theory, Tome 1 (2007) no. 2, pp. 119-161 | Article | MR 2361938
[11] Polydifferentials and the deformation functor of curves with automorphisms, J. Pure Appl. Algebra, Tome 210 (2007) no. 2, pp. 551-558 | Article | MR 2320018
[12] The ramification sequence for a fixed point of an automorphism of a curve and the Weierstrass gap sequence, Math. Z., Tome 259 (2008) no. 3, pp. 471-479 | Article | MR 2395122
[13] Equivariant form of the Deuring-Šafarevič formula for Hasse-Witt invariants, Math. Z., Tome 190 (1985) no. 4, pp. 559-566 | Article | MR 808922 | Zbl 0559.14022
[14] Action of an automorphism of order on cohomology groups of an algebraic curve, J. Pure Appl. Algebra, Tome 42 (1986) no. 1, pp. 85-94 | Article | MR 852320 | Zbl 0607.14022
[15] -ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc., Tome 303 (1987) no. 2, pp. 595-607 | Article | MR 902787 | Zbl 0644.14010
[16] Functors of Artin rings, Trans. Amer. Math. Soc., Tome 130 (1968), pp. 208-222 | Article | MR 217093 | Zbl 0167.49503
[17] Linear representations of finite groups, Springer-Verlag, New York, Graduate Texts in Mathematics, Translated from the second French edition by Leonard L. Scott, Tome 42 (1977) | MR 450380 | Zbl 0355.20006
[18] Local fields, Springer-Verlag, New York, Graduate Texts in Mathematics, Translated from the French by Marvin Jay Greenberg, Tome 67 (1979) | MR 554237 | Zbl 0423.12016
[19] The arithmetic of elliptic curves, Springer, Dordrecht, Graduate Texts in Mathematics, Tome 106 (2009) | Article | MR 2514094 | Zbl 0585.14026
[20] On -rank representations, J. Algebra, Tome 280 (2004) no. 2, pp. 825-841 | Article | MR 2090066
[21] Algebraic function fields and codes, Springer-Verlag, Berlin, Graduate Texts in Mathematics, Tome 254 (2009) | MR 2464941 | Zbl 0816.14011
[22] The -rank of Artin-Schreier curves, Manuscripta Math., Tome 16 (1975) no. 2, pp. 169-193 | Article | MR 376693 | Zbl 0321.14017
[23] An introduction to homological algebra, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 38 (1994) | MR 1269324 | Zbl 0797.18001