Quadratic Differentials and Equivariant Deformation Theory of Curves
[Différentielles quadratiques et théorie des déformations équivariantes de courbes]
Köck, Bernhard ; Kontogeorgis, Aristides
Annales de l'Institut Fourier, Tome 62 (2012), p. 1015-1043 / Harvested from Numdam

Soit G un p-groupe fini agissant sur une courbe lisse projective X sur un corps algébriquement clos k de caractéristique p. Alors la dimension de l’espace tangent du foncteur de déformations équivariantes associé est égal à la dimension de l’espace de co-invariants de G agissant sur l’espace V de différentielles holomorphes quadratiques globales sur X. On applique des résultats connus sur la structure de module de Galois des espaces Riemann-Roch pour calculer cette dimension dans le cas où G est cyclique ou dans le cas où l’action de G sur X est faiblement ramifiée. De plus, on détermine certaines sous-représentations de V, qui s’appellent rang-p représentations.

Given a finite p-group G acting on a smooth projective curve X over an algebraically closed field k of characteristic p, the dimension of the tangent space of the associated equivariant deformation functor is equal to the dimension of the space of coinvariants of G acting on the space V of global holomorphic quadratic differentials on X. We apply known results about the Galois module structure of Riemann-Roch spaces to compute this dimension when G is cyclic or when the action of G on X is weakly ramified. Moreover we determine certain subrepresentations of V, called p-rank representations.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/aif.2715
Classification:  14H30,  14D15,  14F10,  11R32
Mots clés: différentiels quadratiques, espace tangent, foncteur de déformations équivariantes, modules de Galois, espaces Riemann-Roch, faiblement ramifiée, rang-p réprésentations
@article{AIF_2012__62_3_1015_0,
     author = {K\"ock, Bernhard and Kontogeorgis, Aristides},
     title = {Quadratic Differentials and Equivariant Deformation Theory of Curves},
     journal = {Annales de l'Institut Fourier},
     volume = {62},
     year = {2012},
     pages = {1015-1043},
     doi = {10.5802/aif.2715},
     zbl = {1256.14026},
     mrnumber = {3013815},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2012__62_3_1015_0}
}
Köck, Bernhard; Kontogeorgis, Aristides. Quadratic Differentials and Equivariant Deformation Theory of Curves. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1015-1043. doi : 10.5802/aif.2715. http://gdmltest.u-ga.fr/item/AIF_2012__62_3_1015_0/

[1] Bertin, José; Mézard, Ariane Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques, Invent. Math., Tome 141 (2000) no. 1, pp. 195-238 | Article | MR 1767273

[2] Borne, Niels A relative Shafarevich theorem, Math. Z., Tome 248 (2004) no. 2, pp. 351-367 | Article | MR 2088933

[3] Borne, Niels Cohomology of G-sheaves in positive characteristic, Adv. Math., Tome 201 (2006) no. 2, pp. 454-515 | Article | MR 2211535

[4] Cornelissen, Gunther; Kato, Fumiharu Equivariant deformation of Mumford curves and of ordinary curves in positive characteristic, Duke Math. J., Tome 116 (2003) no. 3, pp. 431-470 | Article | MR 1958094

[5] Cornelissen, Gunther; Kato, Fumiharu Zur Entartung schwach verzweigter Gruppenoperationen auf Kurven, J. Reine Angew. Math., Tome 589 (2005), pp. 201-236 | Article | MR 2194683

[6] Farkas, Hershel M.; Kra, Irwin Riemann surfaces, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 71 (1980) | MR 583745 | Zbl 0764.30001

[7] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York, Graduate Texts in Mathematics (1977) no. 52 | MR 463157 | Zbl 0531.14001

[8] Karanikolopoulos, Sotiris On holomorphic polydifferentials in positive characteristic, to appear in Math. Nachr., 25pp (2010) (arXiv:0905.1196v2)

[9] Köck, Bernhard Galois structure of Zariski cohomology for weakly ramified covers of curves, Amer. J. Math., Tome 126 (2004) no. 5, pp. 1085-1107 http://muse.jhu.edu/journals/american_journal_of_mathematics/v126/126.5k"ock.pdf | Article | MR 2089083

[10] Kontogeorgis, Aristides On the tangent space of the deformation functor of curves with automorphisms, Algebra Number Theory, Tome 1 (2007) no. 2, pp. 119-161 | Article | MR 2361938

[11] Kontogeorgis, Aristides Polydifferentials and the deformation functor of curves with automorphisms, J. Pure Appl. Algebra, Tome 210 (2007) no. 2, pp. 551-558 | Article | MR 2320018

[12] Kontogeorgis, Aristides The ramification sequence for a fixed point of an automorphism of a curve and the Weierstrass gap sequence, Math. Z., Tome 259 (2008) no. 3, pp. 471-479 | Article | MR 2395122

[13] Nakajima, Shōichi Equivariant form of the Deuring-Šafarevič formula for Hasse-Witt invariants, Math. Z., Tome 190 (1985) no. 4, pp. 559-566 | Article | MR 808922 | Zbl 0559.14022

[14] Nakajima, Shōichi Action of an automorphism of order p on cohomology groups of an algebraic curve, J. Pure Appl. Algebra, Tome 42 (1986) no. 1, pp. 85-94 | Article | MR 852320 | Zbl 0607.14022

[15] Nakajima, Shōichi p-ranks and automorphism groups of algebraic curves, Trans. Amer. Math. Soc., Tome 303 (1987) no. 2, pp. 595-607 | Article | MR 902787 | Zbl 0644.14010

[16] Schlessinger, Michael Functors of Artin rings, Trans. Amer. Math. Soc., Tome 130 (1968), pp. 208-222 | Article | MR 217093 | Zbl 0167.49503

[17] Serre, Jean-Pierre Linear representations of finite groups, Springer-Verlag, New York, Graduate Texts in Mathematics, Translated from the second French edition by Leonard L. Scott, Tome 42 (1977) | MR 450380 | Zbl 0355.20006

[18] Serre, Jean-Pierre Local fields, Springer-Verlag, New York, Graduate Texts in Mathematics, Translated from the French by Marvin Jay Greenberg, Tome 67 (1979) | MR 554237 | Zbl 0423.12016

[19] Silverman, Joseph H. The arithmetic of elliptic curves, Springer, Dordrecht, Graduate Texts in Mathematics, Tome 106 (2009) | Article | MR 2514094 | Zbl 0585.14026

[20] Stalder, Nicolas On p-rank representations, J. Algebra, Tome 280 (2004) no. 2, pp. 825-841 | Article | MR 2090066

[21] Stichtenoth, Henning Algebraic function fields and codes, Springer-Verlag, Berlin, Graduate Texts in Mathematics, Tome 254 (2009) | MR 2464941 | Zbl 0816.14011

[22] Subrao, Doré The p-rank of Artin-Schreier curves, Manuscripta Math., Tome 16 (1975) no. 2, pp. 169-193 | Article | MR 376693 | Zbl 0321.14017

[23] Weibel, Charles A. An introduction to homological algebra, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 38 (1994) | MR 1269324 | Zbl 0797.18001