Soit un groupe complexe réductif connexe où est un espace vectoriel complexe de dimension finie. Soient et . D’aprés Raïs nous disons que l’orbite est caractéristique pour si la composante connexe de l’identité de est . Si est semi-simple, nous disons que est semi-caractéristique pour si la composante connexe de l’identité de est une extension de par un tore. Nous classifions les orbites de qui ne sont pas (semi)-caractéristiques dans plusieurs cas.
Let be a connected complex reductive group where is a finite-dimensional complex vector space. Let and let . Following Raïs we say that the orbit is characteristic for if the identity component of is . If is semisimple, we say that is semi-characteristic for if the identity component of is an extension of by a torus. We classify the -orbits which are not (semi)-characteristic in many cases.
@article{AIF_2012__62_2_667_0, author = {Schwarz, Gerald W.}, title = {Linear maps preserving orbits}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {667-706}, doi = {10.5802/aif.2691}, zbl = {1255.14040}, mrnumber = {2985513}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_2_667_0} }
Schwarz, Gerald W. Linear maps preserving orbits. Annales de l'Institut Fourier, Tome 62 (2012) pp. 667-706. doi : 10.5802/aif.2691. http://gdmltest.u-ga.fr/item/AIF_2012__62_2_667_0/
[1] Overgroups of some classical linear groups with applications to linear preserver problems, Linear Algebra Appl., Tome 197/198 (1994), pp. 31-61 (Second Conference of the International Linear Algebra Society (ILAS) (Lisbon, 1992)) | Article | MR 1275607 | Zbl 0793.15018
[2] Algebraic groups and linear preserver problems, C. R. Acad. Sci. Paris Sér. I Math., Tome 317 (1993) no. 10, pp. 925-930 | MR 1249362 | Zbl 0811.20044
[3] Maximal subgroups of the classical groups, Trudy Moskov. Mat. Obšč., Tome 1 (1952), pp. 39-166 | MR 49903 | Zbl 0048.01601
[4] Lie transformation groups [see MR0950861 (89m:22010)], Lie groups and Lie algebras, I, Springer, Berlin (Encyclopaedia Math. Sci.) Tome 20 (1993), pp. 95-235 | MR 1306739 | Zbl 0781.22004
[5] Invertible preservers and algebraic groups, Proceedings of the 3rd ILAS Conference (Pensacola, FL, 1993), Tome 212/213 (1994), pp. 249-257 | Article | MR 1306980 | Zbl 0814.15002
[6] Invertible preservers and algebraic groups. II. Preservers of similarity invariants and overgroups of , Linear and Multilinear Algebra, Tome 43 (1997) no. 1-3, pp. 221-255 | Article | MR 1613065 | Zbl 0889.20026
[7] Invertible preservers and algebraic groups. III. Preservers of unitary similarity (congruence) invariants and overgroups of some unitary subgroups, Linear and Multilinear Algebra, Tome 43 (1997) no. 1-3, pp. 257-282 | Article | MR 1613069 | Zbl 0889.20027
[8] Differential geometry, Lie groups, and symmetric spaces, Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, Pure and Applied Mathematics, Tome 80 (1978) | MR 514561 | Zbl 0451.53038
[9] The structure of Lie groups, Holden-Day Inc., San Francisco (1965) | MR 207883 | Zbl 0131.02702
[10] A note on automorphisms of Lie algebras, Pacific J. Math., Tome 12 (1962), pp. 303-315 | MR 148716 | Zbl 0109.26201
[11] Lie algebras, Interscience Publishers (a division of John Wiley & Sons), New York-London, Interscience Tracts in Pure and Applied Mathematics, No. 10 (1962) | MR 143793 | Zbl 0121.27504
[12] Lie algebras, Dover Publications Inc., New York (1979) (Republication of the 1962 original) | MR 559927
[13] Linear preserver problems, Amer. Math. Monthly, Tome 108 (2001) no. 7, pp. 591-605 | Article | MR 1862098
[14] Slices étales, Sur les groupes algébriques, Soc. Math. France, Paris (1973), p. 81-105. Bull. Soc. Math. France, Paris, Mémoire 33 | Numdam | MR 318167 | Zbl 0286.14014
[15] Adhérences d’orbite et invariants, Invent. Math., Tome 29 (1975) no. 3, pp. 231-238 | Article | MR 376704 | Zbl 0315.14018
[16] Inclusion relations between transitive compact transformation groups, Trudy Moskov. Mat. Obšč., Tome 11 (1962), pp. 199-242 | MR 153779 | Zbl 0192.12601
[17] Decompositions of reductive Lie groups, Mat. Sb. (N.S.), Tome 80 (122) (1969), pp. 553-599 | MR 277660 | Zbl 0222.22011
[18] Topology of transitive transformation groups, Johann Ambrosius Barth Verlag GmbH, Leipzig (1994) | MR 1266842 | Zbl 0796.57001
[19] Linear preserver problems and algebraic groups, Math. Ann., Tome 303 (1995) no. 1, pp. 165-184 | Article | MR 1348361 | Zbl 0836.20065
[20] Notes sur la notion d’invariant caractéristique (2007) (arxiv.org/abs/0707.0782v1)
[21] Algebraic quotients of compact group actions, J. Algebra, Tome 244 (2001) no. 2, pp. 365-378 | Article | MR 1857750
[22] Invariants of finite groups and their applications to combinatorics, Bull. Amer. Math. Soc. (N.S.), Tome 1 (1979) no. 3, pp. 475-511 | Article | MR 526968 | Zbl 0497.20002
[23] What is a Wilf-Zeilberger pair?, Notices Amer. Math. Soc., Tome 57 (2010) no. 4, p. 508-509 | MR 2647850
[24] LiE, a software package for Lie group computations, Euromath Bull., Tome 1 (1994) no. 2, pp. 83-94 | MR 1283465 | Zbl 0807.17001
[25] A package for Lie group computations, Computer Algebra Nederland, Amsterdam (1992)
[26] A certain class of quasihomogeneous affine varieties, Izv. Akad. Nauk SSSR Ser. Mat., Tome 36 (1972), pp. 749-764 | MR 313260 | Zbl 0248.14014
[27] The Classical Groups. Their Invariants and Representations, Princeton University Press, Princeton, N.J. (1939) | MR 1488158 | Zbl 1024.20502
[28] Rational functions certify combinatorial identities, J. Amer. Math. Soc., Tome 3 (1990) no. 1, pp. 147-158 | Article | MR 1007910 | Zbl 0695.05004