Dans ce papier nous construisons, pour chaque variété de dimension trois close orientable et asphérique , une classe d’homologie de dimension deux dans dont la norme permet avec le volume simplicial de de caractériser les applications de degré non-nul de dans qui sont homotopes à un revêtement. Comme conséquence, nous donnons un critère d’homéomorphisme pour les applications de degré un en terme d’isométries entre les groupes de cohomologie bornée de et .
In this paper we construct, for each aspherical oriented -manifold , a -dimensional class in the -homology of whose norm combined with the Gromov simplicial volume of gives a characterization of those nonzero degree maps from to which are homotopic to a covering map. As an application we characterize those degree one maps which are homotopic to a homeomorphism in term of isometries between the bounded cohomology groups of and .
@article{AIF_2012__62_1_393_0, author = {Derbez, Pierre}, title = {Local rigidity of aspherical three-manifolds}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {393-416}, doi = {10.5802/aif.2708}, zbl = {1255.57016}, mrnumber = {2986274}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_1_393_0} }
Derbez, Pierre. Local rigidity of aspherical three-manifolds. Annales de l'Institut Fourier, Tome 62 (2012) pp. 393-416. doi : 10.5802/aif.2708. http://gdmltest.u-ga.fr/item/AIF_2012__62_1_393_0/
[1] Lower bounds on volumes of hyperbolic Haken 3-manifolds (arXiv:math/9906182 (1999))
[2] Surfaces et cohomologie bornée, Ergodic Theory Dyn. Syst., Tome 92 (1988) no. 3, pp. 509-526 | MR 939473 | Zbl 0641.55015
[3] Non-zero degree maps and surface bundles over , J. Differential Geom., Tome 43 (1996) no. 4, pp. 789-806 | MR 1412685 | Zbl 0868.57029
[4] The Godbillon-Vey invariant of a transversely homogeneous foliation, Trans. Amer. Math. Soc., Tome 286 (1984) no. 2, pp. 651-664 | Article | MR 760978 | Zbl 0548.57016
[5] Volumes in Seifert space, Duke Math. J., Tome 51 (1984) no. 3, pp. 529-545 | Article | MR 757951 | Zbl 0546.57003
[6] Topological rigidity and Gromov simplicial volume, Comment. Math. Helv., Tome 85 (2010) no. 1, pp. 1-37 | Article | MR 2563679
[7] Finiteness of mapping degrees and -volume on graph manifolds, Algebraic and Geometric Topology, Tome 9 (2009), pp. 1727-1749 | Article | MR 2539193
[8] Bounded classes in the cohomology of manifolds, Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata, Tome 92 (2002), pp. 73-85 | MR 1934011
[9] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) no. 56, pp. 5-99 | Numdam | MR 686042 | Zbl 0516.53046
[10] -manifolds, Princeton Univ. Press, Ann. of Math. Studies, Tome 86 (1976) | MR 415619 | Zbl 0345.57001
[11] Seifert fibered space in 3-manifolds, Mem. Amer. Math. Soc., Ann. of Math. Studies, Tome 21 (1979) | MR 539411 | Zbl 0415.57005
[12] Homotopy equivalences of 3-manifolds with boundaries, Springer, Berlin, Lecture Notes in Mathematics, Tome 761 (1979) | MR 551744 | Zbl 0412.57007
[13] Topological rigidity for non-aspherical manifolds (arXiv:math.KT/0509238, to appear in Quarterly Journal of Pure and Applied mathematics)
[14] -manifolds with(out) metrics of nonpositive curvature, Invent. Math., Tome 122 (1995) no. 2, pp. 277-289 | Article | MR 1358977 | Zbl 0840.53031
[15] Relative Euler number and finite covers of graph manifolds, Geometric topology (Athens, GA, 1993), Amer. Math. Soc., Providence, RI (AMS/IP Stud. Adv. Math, 2.1.) (1997), pp. 80-103 | MR 1470722 | Zbl 0889.57024
[16] Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc., Tome 94 (1985) no. 3, pp. 359-544 | Article | MR 787909 | Zbl 0536.57023
[17] -manifolds fibering over , Proc. Am. Math. Soc., Tome 58 (1979), pp. 353-356 | Article | MR 413105 | Zbl 0334.57003
[18] A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Am. Math. Soc., Tome 268 (1981), pp. 299-343 | Article | MR 632532 | Zbl 0546.57002
[19] Maps between Seifert fibered spaces of infinite , Pacific J. Math., Tome 160 (1993), pp. 143-154 | MR 1227509 | Zbl 0815.57002
[20] A rigidity theorem for Haken manifolds, Math. Proc. Cambridge Philos. Soc., Tome 118 (1995) no. 1, pp. 141-160 | Article | MR 1329465 | Zbl 0852.57010
[21] Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), Tome 6 (1982) no. 3, pp. 357-381 | Article | MR 648524 | Zbl 0496.57005
[22] A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc., Tome 59 (1986) no. 339, p. i-vi and 99–130 | MR 823443 | Zbl 0585.57006
[23] The existence of maps of nonzero degree between aspherical 3-manifolds, Math. Z., Tome 208 (1991) no. 1, pp. 147-160 | Article | MR 1125739 | Zbl 0737.57006
[24] The -injectivity of self-maps of nonzero degree on -manifolds, Math. Ann., Tome 297 (1993) no. 1, pp. 171-189 | Article | MR 1238414 | Zbl 0793.57008
[25] Any -manifold -dominates at most finitely many geometric -manifolds, Math. Ann., Tome 322 (2002) no. 3, pp. 525-535 | Article | MR 1895705