Local rigidity of aspherical three-manifolds
[Rigidité topologique des variétés asphériques de dimension trois]
Derbez, Pierre
Annales de l'Institut Fourier, Tome 62 (2012), p. 393-416 / Harvested from Numdam

Dans ce papier nous construisons, pour chaque variété de dimension trois close orientable et asphérique M, une classe d’homologie l 1 de dimension deux dans M dont la norme permet avec le volume simplicial de M de caractériser les applications de degré non-nul de M dans N qui sont homotopes à un revêtement. Comme conséquence, nous donnons un critère d’homéomorphisme pour les applications de degré un en terme d’isométries entre les groupes de cohomologie bornée de M et N.

In this paper we construct, for each aspherical oriented 3-manifold M, a 2-dimensional class in the l 1 -homology of M whose norm combined with the Gromov simplicial volume of M gives a characterization of those nonzero degree maps from M to N which are homotopic to a covering map. As an application we characterize those degree one maps which are homotopic to a homeomorphism in term of isometries between the bounded cohomology groups of M and N.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/aif.2708
Classification:  57M50,  51H20
Mots clés: variétés asphériques de dimension trois, cohomologie bornée, homologie l 1 , applications de degré non-nul, rigidité topologique.
@article{AIF_2012__62_1_393_0,
     author = {Derbez, Pierre},
     title = {Local rigidity of aspherical three-manifolds},
     journal = {Annales de l'Institut Fourier},
     volume = {62},
     year = {2012},
     pages = {393-416},
     doi = {10.5802/aif.2708},
     zbl = {1255.57016},
     mrnumber = {2986274},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2012__62_1_393_0}
}
Derbez, Pierre. Local rigidity of aspherical three-manifolds. Annales de l'Institut Fourier, Tome 62 (2012) pp. 393-416. doi : 10.5802/aif.2708. http://gdmltest.u-ga.fr/item/AIF_2012__62_1_393_0/

[1] Agol, I. Lower bounds on volumes of hyperbolic Haken 3-manifolds (arXiv:math/9906182 (1999))

[2] Barges, J.; Ghys, E. Surfaces et cohomologie bornée, Ergodic Theory Dyn. Syst., Tome 92 (1988) no. 3, pp. 509-526 | MR 939473 | Zbl 0641.55015

[3] Boileau, M.; Wang, S. Non-zero degree maps and surface bundles over S 1 , J. Differential Geom., Tome 43 (1996) no. 4, pp. 789-806 | MR 1412685 | Zbl 0868.57029

[4] Brooks, R.; Goldman, W. The Godbillon-Vey invariant of a transversely homogeneous foliation, Trans. Amer. Math. Soc., Tome 286 (1984) no. 2, pp. 651-664 | Article | MR 760978 | Zbl 0548.57016

[5] Brooks, R.; Goldman, W. Volumes in Seifert space, Duke Math. J., Tome 51 (1984) no. 3, pp. 529-545 | Article | MR 757951 | Zbl 0546.57003

[6] Derbez, P. Topological rigidity and Gromov simplicial volume, Comment. Math. Helv., Tome 85 (2010) no. 1, pp. 1-37 | Article | MR 2563679

[7] Derbez, P.; Wang, S. Finiteness of mapping degrees and PSL(2,R)-volume on graph manifolds, Algebraic and Geometric Topology, Tome 9 (2009), pp. 1727-1749 | Article | MR 2539193

[8] Fujiwara, K.; Soma, T. Bounded classes in the cohomology of manifolds, Dedicated to John Stallings on the occasion of his 65th birthday. Geom. Dedicata, Tome 92 (2002), pp. 73-85 | MR 1934011

[9] Gromov, M. Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) no. 56, pp. 5-99 | Numdam | MR 686042 | Zbl 0516.53046

[10] Hempel, J. 3-manifolds, Princeton Univ. Press, Ann. of Math. Studies, Tome 86 (1976) | MR 415619 | Zbl 0345.57001

[11] Jaco, W.; Shalen, P.B. Seifert fibered space in 3-manifolds, Mem. Amer. Math. Soc., Ann. of Math. Studies, Tome 21 (1979) | MR 539411 | Zbl 0415.57005

[12] Johannson, K. Homotopy equivalences of 3-manifolds with boundaries, Springer, Berlin, Lecture Notes in Mathematics, Tome 761 (1979) | MR 551744 | Zbl 0412.57007

[13] Kreck, M.; Lück, W. Topological rigidity for non-aspherical manifolds (arXiv:math.KT/0509238, to appear in Quarterly Journal of Pure and Applied mathematics)

[14] Leeb, B. 3-manifolds with(out) metrics of nonpositive curvature, Invent. Math., Tome 122 (1995) no. 2, pp. 277-289 | Article | MR 1358977 | Zbl 0840.53031

[15] Luecke, J.; Wu, Y. Relative Euler number and finite covers of graph manifolds, Geometric topology (Athens, GA, 1993), Amer. Math. Soc., Providence, RI (AMS/IP Stud. Adv. Math, 2.1.) (1997), pp. 80-103 | MR 1470722 | Zbl 0889.57024

[16] Matsumoto, S.; Morita, S. Bounded cohomology of certain groups of homeomorphisms, Proc. Amer. Math. Soc., Tome 94 (1985) no. 3, pp. 359-544 | Article | MR 787909 | Zbl 0536.57023

[17] Neumann, D. A. 3-manifolds fibering over S 1 , Proc. Am. Math. Soc., Tome 58 (1979), pp. 353-356 | Article | MR 413105 | Zbl 0334.57003

[18] Neumann, W. A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Am. Math. Soc., Tome 268 (1981), pp. 299-343 | Article | MR 632532 | Zbl 0546.57002

[19] Rong, Y. Maps between Seifert fibered spaces of infinite π 1 , Pacific J. Math., Tome 160 (1993), pp. 143-154 | MR 1227509 | Zbl 0815.57002

[20] Soma, T. A rigidity theorem for Haken manifolds, Math. Proc. Cambridge Philos. Soc., Tome 118 (1995) no. 1, pp. 141-160 | Article | MR 1329465 | Zbl 0852.57010

[21] Thurston, W. Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.), Tome 6 (1982) no. 3, pp. 357-381 | Article | MR 648524 | Zbl 0496.57005

[22] Thurston, W. A norm for the homology of 3-manifolds, Mem. Amer. Math. Soc., Tome 59 (1986) no. 339, p. i-vi and 99–130 | MR 823443 | Zbl 0585.57006

[23] Wang, S. The existence of maps of nonzero degree between aspherical 3-manifolds, Math. Z., Tome 208 (1991) no. 1, pp. 147-160 | Article | MR 1125739 | Zbl 0737.57006

[24] Wang, S. The π 1 -injectivity of self-maps of nonzero degree on 3-manifolds, Math. Ann., Tome 297 (1993) no. 1, pp. 171-189 | Article | MR 1238414 | Zbl 0793.57008

[25] Wang, S.; Zhou, Q. Any 3-manifold 1-dominates at most finitely many geometric 3-manifolds, Math. Ann., Tome 322 (2002) no. 3, pp. 525-535 | Article | MR 1895705