Une surface projective convexe est le quotient d’un ouvert proprement convexe de l’espace projectif réel par un sous-groupe discret de . Nous donnons plusieurs caractérisations du fait qu’une surface projective convexe est de volume fini pour la mesure de Busemann. On en déduit que si n’est pas un triangle alors est strictement convexe, à bord et qu’une surface projective convexe est de volume fini si et seulement si la surface duale est de volume fini.
A convex projective surface is the quotient of a properly convex open of the projective real space by a discrete subgroup of . We give some caracterisations of the fact that a convex projective surface is of finite volume for the Busemann’s measure. We deduce that, if is not a triangle, then is strictly convex, with boundary and that a convex projective surface is of finite volume if and only if the dual surface is of finite volume.
@article{AIF_2012__62_1_325_0, author = {Marquis, Ludovic}, title = {Surface Projective Convexe de volume fini}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {325-392}, doi = {10.5802/aif.2707}, zbl = {1254.57015}, mrnumber = {2986273}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_1_325_0} }
Marquis, Ludovic . Surface Projective Convexe de volume fini. Annales de l'Institut Fourier, Tome 62 (2012) pp. 325-392. doi : 10.5802/aif.2707. http://gdmltest.u-ga.fr/item/AIF_2012__62_1_325_0/
[1] Automorphismes des cônes convexes, Invent. Math., Tome 141 (2000), pp. 149-193 | Article | MR 1767272
[2] Convexes hyperboliques et fonctions quasisymétriques, Publ. Math. IHES, Tome 97 (2003), pp. 181-237 | Article | Numdam | MR 2010741
[3] Convexes hyperpoliques et quasiisométries, Geometriae Dedicata, Tome 122 (2006), pp. 109-134 | Article | MR 2295544
[4] Sous-groupes discrets des groupes de Lie, European Summer School in Group Theory Luminy (7-18 July 1997)
[5] Sur les variétés localement affines et localement projectives, Bulletin de la Société Mathématique de France, Tome 88 (1960), pp. 229-332 | Numdam | MR 124005 | Zbl 0098.35204
[6] Compact Clifford-Klein forms of symmetric spaces, Topology, Tome 2 (1963), pp. 111-122 | Article | MR 146301 | Zbl 0116.38603
[7] A course in metric geometry, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 33 (2001) | MR 1835418
[8] Convex decompositions of real projective surfaces. II : Admissible decompositions, J. Differential Geom, Tome 40 (1994), pp. 239-283 | MR 1293655 | Zbl 0822.53009
[9] L’aire des triangles idéaux en géométrie de Hilbert, L’enseignement mathématique, Tome 50 (2004), pp. 203-237 | MR 2116715
[10] Area of ideal triangles and gromov hyperbolicity in hilbert geometry (A paraître)
[11] Convex real projective structures on compact surfaces, J. Differential Geom., Tome 31 (1990), pp. 791-845 | MR 1053346 | Zbl 0711.53033
[12] Deformation spaces associated to compact hyperbolic manifolds, Discrete groups in Geometry and Analysis Progr. Math, Tome 67 (1984), pp. 48-106 | MR 900823 | Zbl 0664.53023
[13] Quasi-homogeneous cones, Math. Notes, Tome 1 (1967), pp. 231-235 | Article | Zbl 0163.16902
[14] Convex projective structures on Gromov-Thurston manifolds, Geometry and Topology, Tome 11 (2007), pp. 1777-1830 | Article | MR 2350468
[15] Convex fundamental domains for properly convex real projective structures (preprint)
[16] Espace de Modules Marqués des Surfaces Projectives Convexes de Volume Fini (preprint arxiv.org/abs/0910.5839)
[17] On the classification of noncompact surfaces, Trans. Amer. Math. Soc., Tome 106 (1963), pp. 259-269 | Article | MR 143186 | Zbl 0156.22203
[18] Sur les automorphismes affines des ouverts convexes saillants, Anna Scuola Normale Superiore di Pisa, Tome 24 (1970), pp. 641-665 | Numdam | MR 283720 | Zbl 0206.51302
[19] The theory of convex homogeneous cones, Trudy Moskov. Mat. Obšč., Tome 12 (1963), pp. 303-358 | MR 158414 | Zbl 0138.43301
[20] The structure group of automorphisms of a homogeneous convex cone, Trudy Moskov. Mat. Obšč., Tome 13 (1965), pp. 56-81 | MR 201575 | Zbl 0224.17010