The cofinal property of the reflexive indecomposable Banach spaces
Argyros, Spiros A. ; Raikoftsalis, Theocharis
Annales de l'Institut Fourier, Tome 62 (2012), p. 1-45 / Harvested from Numdam

On démontre que tout espace de Banach séparable réflexif est quotient d’un espace réflexif héréditairement indécomposable, ce qui implique que tout espace de Banach séparable réflexif est isomorphe à un sous-espace d’un espace réflexif indécomposable. De plus, tout espace de Banach séparable réflexif est quotient d’un espace réflexif complémentablement p -saturé, où 1<p<+, et d’un espace c 0 -saturé.

It is shown that every separable reflexive Banach space is a quotient of a reflexive hereditarily indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably p -saturated space with 1<p< and of a c 0 saturated space.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/aif.2697
Classification:  46B03,  46B06,  46B70
Mots clés: espace de Banach, p -saturé, espaces indécomposables, espaces héréditairement indécomposables, méthodes d’interpolation, normes saturées
@article{AIF_2012__62_1_1_0,
     author = {Argyros, Spiros A. and Raikoftsalis, Theocharis},
     title = {The cofinal property of the reflexive indecomposable Banach spaces},
     journal = {Annales de l'Institut Fourier},
     volume = {62},
     year = {2012},
     pages = {1-45},
     doi = {10.5802/aif.2697},
     zbl = {1253.46009},
     mrnumber = {2986263},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2012__62_1_1_0}
}
Argyros, Spiros A.; Raikoftsalis, Theocharis. The cofinal property of the reflexive indecomposable Banach spaces. Annales de l'Institut Fourier, Tome 62 (2012) pp. 1-45. doi : 10.5802/aif.2697. http://gdmltest.u-ga.fr/item/AIF_2012__62_1_1_0/

[1] Alspach, Dale E.; Argyros, Spiros A. Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.), Tome 321 (1992), pp. 44 | MR 1191024 | Zbl 0787.46009

[2] Amir, D.; Lindenstrauss, J. The structure of weakly compact sets in Banach spaces, Ann. of Math. (2), Tome 88 (1968), pp. 35-46 | Article | MR 228983 | Zbl 0164.14903

[3] Argyros, Spiros A.; Dodos, Pandelis Genericity and amalgamation of classes of Banach spaces, Adv. Math., Tome 209 (2007) no. 2, pp. 666-748 | Article | MR 2296312

[4] Argyros, Spiros A.; Felouzis, V. Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc., Tome 13 (2000) no. 2, p. 243-294 (electronic) | Article | MR 1750954

[5] Argyros, Spiros A.; Godefroy, Gilles; Rosenthal, Haskell P. Descriptive set theory and Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam (2003), pp. 1007-1069 | Article | MR 1999190

[6] Argyros, Spiros A.; Haydon, Richard G. A hereditarily indecomposable -space that solves the scalar-plus-compact problem, Acta Math., Tome 206 (2011) no. 1, pp. 1-54 | Article | MR 2784662

[7] Argyros, Spiros A.; Mercourakis, S.; Tsarpalias, A. Convex unconditionality and summability of weakly null sequences, Israel J. Math., Tome 107 (1998), pp. 157-193 | Article | MR 1658551 | Zbl 0942.46007

[8] Argyros, Spiros A.; Todorcevic, Stevo Ramsey methods in analysis, Birkhäuser Verlag, Basel, Advanced Courses in Mathematics. CRM Barcelona (2005) | MR 2145246

[9] Argyros, Spiros A.; Tolias, Andreas Methods in the theory of hereditarily indecomposable Banach spaces, Mem. Amer. Math. Soc., Tome 170 (2004) no. 806, pp. vi+114 | MR 2053392

[10] Davis, W. J.; Figiel, T.; Johnson, W. B.; Pełczyński, A. Factoring weakly compact operators, J. Functional Analysis, Tome 17 (1974), pp. 311-327 | Article | MR 355536 | Zbl 0306.46020

[11] Gasparis, I. New examples of c 0 -saturated Banach spaces, Math. Ann., Tome 344 (2009) no. 2, pp. 491-500 | Article | MR 2495780

[12] Gasparis, I. New examples of c 0 -saturated Banach spaces. II, J. Funct. Anal., Tome 256 (2009) no. 11, pp. 3830-3840 | Article | MR 2514062

[13] Gowers, W. T.; Maurey, B. The unconditional basic sequence problem, J. Amer. Math. Soc., Tome 6 (1993) no. 4, pp. 851-874 | Article | MR 1201238 | Zbl 0827.46008

[14] Grothendieck, A. Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math., Tome 74 (1952), pp. 168-186 | Article | MR 47313 | Zbl 0046.11702

[15] Leung, Denny H. Some stability properties of c 0 -saturated spaces, Math. Proc. Cambridge Philos. Soc., Tome 118 (1995) no. 2, pp. 287-301 | Article | MR 1341791 | Zbl 0840.46010

[16] Lindenstrauss, J. On non separable reflexive Banach spaces, Bull. Amer. Math. Soc., Tome 72 (1966), pp. 967-970 | Article | MR 205040 | Zbl 0156.36403

[17] Lindenstrauss, J. Some open problems in Banach space theory, Sémin. Choquet, 15e Année 1975/76, Initiation à l’Analyse, Exposé 18, 9 p. (1977) (1977) | Numdam | Zbl 0363.46016

[18] Lopez-Abad, J.; Manoussakis, A. A classification of Tsirelson type spaces, Canad. J. Math., Tome 60 (2008) no. 5, pp. 1108-1148 | Article | MR 2442049

[19] Neidinger, Richard D. Factoring operators through hereditarily-l p spaces, Banach spaces (Columbia, Mo., 1984), Springer, Berlin (Lecture Notes in Math.) Tome 1166 (1985), pp. 116-128 | Article | MR 827767

[20] Neidinger, Richard Dean Properties of Tauberian Operators on Banach Spaces (semi-embedding, factorization, functional), ProQuest LLC, Ann Arbor, MI (1984) (Thesis (Ph.D.)–The University of Texas at Austin) | MR 2634045

[21] Rosenthal, Haskell P. A characterization of Banach spaces containing l 1 , Proc. Nat. Acad. Sci. U.S.A., Tome 71 (1974), pp. 2411-2413 | Article | MR 358307 | Zbl 0297.46013

[22] Sobczyk, Andrew Projection of the space (m) on its subspace (c 0 ), Bull. Amer. Math. Soc., Tome 47 (1941), pp. 938-947 | Article | MR 5777 | Zbl 0027.40801

[23] Zippin, M. Banach spaces with separable duals, Trans. Amer. Math. Soc., Tome 310 (1988) no. 1, pp. 371-379 | Article | MR 965758 | Zbl 0706.46015