Nous construisons certains opérateurs différentiels et leurs analogues -adiques, qui agissent sur des formes automorphes (à valeurs vectorielles ou scalaires) pour les groupes unitaires . Nous étudions des propriétés de ces opérateurs, et nous les utilisons à prouver quelques théorèmes arithmetiques. Ces opérateurs différentiels sont une généralisation au cas -adique des opérateurs différentiels étudiés d’abord par H. Maass et étudiés ensuite en détail par M. Harris et G. Shimura. Ils sont une généralisation au cas des opérateurs différentiels -adiques à valeurs vectorielles construits pour les formes modulaires par N. Katz. Ils devraient être utiles dans la construction de certaines fonctions -adiques, en particulier les fonctions -adiques attachées aux familles -adiques de formes automorphes pour les groupes unitaires .
The goal of this paper is to study certain -adic differential operators on automorphic forms on . These operators are a generalization to the higher-dimensional, vector-valued situation of the -adic differential operators constructed for Hilbert modular forms by N. Katz. They are a generalization to the -adic case of the -differential operators first studied by H. Maass and later studied extensively by M. Harris and G. Shimura. The operators should be useful in the construction of certain -adic -functions attached to -adic families of automorphic forms on the unitary groups .
@article{AIF_2012__62_1_177_0, author = {Eischen, Ellen E.}, title = {$p$-adic Differential Operators on Automorphic Forms on Unitary Groups}, journal = {Annales de l'Institut Fourier}, volume = {62}, year = {2012}, pages = {177-243}, doi = {10.5802/aif.2704}, zbl = {1257.11054}, mrnumber = {2986270}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2012__62_1_177_0} }
Eischen, Ellen E. $p$-adic Differential Operators on Automorphic Forms on Unitary Groups. Annales de l'Institut Fourier, Tome 62 (2012) pp. 177-243. doi : 10.5802/aif.2704. http://gdmltest.u-ga.fr/item/AIF_2012__62_1_177_0/
[1] Non-Archimedean -functions and arithmetical Siegel modular forms, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 1471 (2004) | MR 2034949
[2] -adic differential operators on vector-valued automorphic forms and applications (2009) (Ph.D. thesis, University of Michigan, available at http://www.math.northwestern.edu/ eeischen/EischenThesisSubmitted061109.pdf)
[3] An Eisenstein Measure for Unitary Groups (In Preparation.)
[4] -adic -functions for Unitary Shimura Varieties, II (In preparation.)
[5] Degeneration of abelian varieties, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Tome 22 (1990) (With an appendix by David Mumford) | MR 1083353 | Zbl 0744.14031
[6] Special values of zeta functions attached to Siegel modular forms, Ann. Sci. École Norm. Sup. (4), Tome 14 (1981) no. 1, pp. 77-120 | Numdam | MR 618732 | Zbl 0465.10022
[7] Arithmetic vector bundles and automorphic forms on Shimura varieties. II, Compositio Math., Tome 60 (1986) no. 3, pp. 323-378 | Numdam | MR 869106 | Zbl 0612.14019
[8] -adic -functions for unitary Shimura varieties. I. Construction of the Eisenstein measure, Doc. Math. (2006) no. Extra Vol., p. 393-464 (electronic) | MR 2290594
[9] -adic automorphic forms on Shimura varieties, Springer-Verlag, New York, Springer Monographs in Mathematics (2004) | MR 2055355
[10] -adic automorphic forms on reductive groups, Astérisque (2005) no. 298, pp. 147-254 (Automorphic forms. I) | MR 2141703
[11] (Notes on Nicholas Katz’s lectures in the seminar on the Sato-Tate Conjecture at Princeton University during the fall of 2006)
[12] Travaux de Dwork, Séminaire Bourbaki, 24ème année (1971/1972), Exp. No. 409, Springer, Berlin (1973), p. 167-200. Lecture Notes in Math., Vol. 317 | Numdam | MR 498577 | Zbl 0259.14007
[13] Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math. (1970) no. 39, pp. 175-232 | Article | Numdam | MR 291177 | Zbl 0221.14007
[14] -adic properties of modular schemes and modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Springer, Berlin (1973), p. 69-190. Lecture Notes in Mathematics, Vol. 350 | MR 447119 | Zbl 0271.10033
[15] The Eisenstein measure and -adic interpolation, Amer. J. Math., Tome 99 (1977) no. 2, pp. 238-311 | Article | MR 485797 | Zbl 0375.12022
[16] -adic -functions for CM fields, Invent. Math., Tome 49 (1978) no. 3, pp. 199-297 | Article | MR 513095 | Zbl 0417.12003
[17] On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ., Tome 8 (1968), pp. 199-213 | MR 237510 | Zbl 0165.54802
[18] -adic cohomology: from theory to practice, -adic Geometry: Lectures from the 2007 Arizona Winter School, American Mathematical Society (2008), p. 175-200. University Lecture Series, Vol. 45 | MR 2482348
[19] Points on some Shimura varieties over finite fields, J. Amer. Math. Soc., Tome 5 (1992) no. 2, pp. 373-444 | Article | MR 1124982 | Zbl 0796.14014
[20] Arithmetic compactifications of PEL-type Shimura varieties (2008) (Ph.D. thesis, Harvard University, available at http://www.math.princeton.edu/ klan/articles/cpt-PEL-type-thesis-single.pdf)
[21] Differentialgleichungen und automorphe Funktionen, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, Erven P. Noordhoff N.V., Groningen (1956), pp. 34-39 | MR 86901 | Zbl 0074.30402
[22] Siegel’s modular forms and Dirichlet series, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 216 (1971) (Dedicated to the last great representative of a passing epoch. Carl Ludwig Siegel on the occasion of his seventy-fifth birthday) | MR 344198 | Zbl 0224.10028
[23] Introduction to Shimura Varieties (2004) (Notes available at http://www.jmilne.org/math/)
[24] An analytic construction of degenerating abelian varieties over complete rings, Compositio Math., Tome 24 (1972), pp. 239-272 | Numdam | MR 352106 | Zbl 0241.14020
[25] Two variable -adic -functions attached to eigenfamilies of positive slope, Invent. Math., Tome 154 (2003) no. 3, pp. 551-615 | Article | MR 2018785
[26] The Maass-Shimura differential operators and congruences between arithmetical Siegel modular forms, Mosc. Math. J., Tome 5 (2005) no. 4, p. 883-918, 973–974 | MR 2266464
[27] Compactifications de l’espace de modules de Hilbert-Blumenthal, Compositio Math., Tome 36 (1978) no. 3, pp. 255-335 | Numdam | MR 515050 | Zbl 0386.14006
[28] Formes modulaires et fonctions zêta -adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Springer, Berlin (1973), p. 191-268. Lecture Notes in Math., Vol. 350 | MR 404145 | Zbl 0277.12014
[29] Arithmetic of differential operators on symmetric domains, Duke Math. J., Tome 48 (1981) no. 4, pp. 813-843 | Article | MR 782579 | Zbl 0487.10021
[30] Differential operators and the singular values of Eisenstein series, Duke Math. J., Tome 51 (1984) no. 2, pp. 261-329 | Article | MR 747868 | Zbl 0546.10025
[31] Invariant differential operators on Hermitian symmetric spaces, Ann. of Math. (2), Tome 132 (1990) no. 2, pp. 237-272 | Article | MR 1070598 | Zbl 0718.11020
[32] Differential operators, holomorphic projection, and singular forms, Duke Math. J., Tome 76 (1994) no. 1, pp. 141-173 | Article | MR 1301189 | Zbl 0829.11029
[33] Abelian varieties with complex multiplication and modular functions, Princeton University Press, Princeton, NJ, Princeton Mathematical Series, Tome 46 (1998) | MR 1492449 | Zbl 0908.11023
[34] Arithmeticity in the theory of automorphic forms, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 82 (2000) | MR 1780262