Surjectivity of Siegel Φ-operator for square free level and small weight
[Surjectivité de l’opérateur Φ de Siegel pour des niveaux sans facteur carré et pour petit poids]
Böcherer, Siegfried ; Ibukiyama, Tomoyoshi
Annales de l'Institut Fourier, Tome 62 (2012), p. 121-144 / Harvested from Numdam

Nous démontrons la surjectivité de l’opérateur Φ de Siegel pour des formes modulaires pour certains groupes de congruence de Sp(2,) et de poids 4, où les techniques standards (séries de Poincaré ou séries de Klingen-Eisenstein) ne marchent pas. Nous utilisons des séries thêta et le problème de base pour plusieurs genres.

We show the surjectivity of the (global) Siegel Φ-operator for modular forms for certain congruence subgroups of Sp(2,) and weight k=4, where the standard techniques (Poincaré series or Klingen-Eisenstein series) are no longer available. Our main tools are theta series and genus versions of basis problems.

Publié le : 2012-01-01
DOI : https://doi.org/10.5802/aif.2702
Classification:  11F46,  11F27
Mots clés: formes modulaires de Siegel, l’opérateur Φ, séries de thêta
@article{AIF_2012__62_1_121_0,
     author = {B\"ocherer, Siegfried and Ibukiyama, Tomoyoshi},
     title = {Surjectivity of Siegel $\Phi $-operator for square free level and small weight},
     journal = {Annales de l'Institut Fourier},
     volume = {62},
     year = {2012},
     pages = {121-144},
     doi = {10.5802/aif.2702},
     zbl = {pre06064515},
     mrnumber = {2986268},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2012__62_1_121_0}
}
Böcherer, Siegfried; Ibukiyama, Tomoyoshi. Surjectivity of Siegel $\Phi $-operator for square free level and small weight. Annales de l'Institut Fourier, Tome 62 (2012) pp. 121-144. doi : 10.5802/aif.2702. http://gdmltest.u-ga.fr/item/AIF_2012__62_1_121_0/

[1] Arakawa, Tsuneo Vector-valued Siegel’s modular forms of degree two and the associated Andrianov L-functions, Manuscripta Math., Tome 44 (1983) no. 1-3, pp. 155-185 | Article | MR 709851 | Zbl 0517.10024

[2] Böcherer, Siegfried On Eisenstein series of degree two for squarefree levels and the genus version of the basis problem. I, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ (2006), pp. 43-70 (Proceedings of the conference in memory of T.Arakawa, Ed. S. Böcherer, T. Ibukiyama, M. Kaneko, F. Sato) | MR 2208209

[3] Böcherer, Siegfried The genus version of the basis problem II: The case of oldforms (2009) (Preprint)

[4] Böcherer, Siegfried; Furusawa, Masaaki; Schulze-Pillot, Rainer On the global Gross-Prasad conjecture for Yoshida liftings, Contributions to automorphic forms, geometry, and number theory, Johns Hopkins Univ. Press, Baltimore, MD (2004), pp. 105-130 | MR 2058606

[5] Böcherer, Siegfried; Hironaka, Yumiko; Sato, Fumihiro Linear independence of local densities of quadratic forms and its application to the theory of Siegel modular forms, Quadratic forms—algebra, arithmetic, and geometry, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 493 (2009), pp. 51-82 | MR 2537093

[6] Böcherer, Siegfried; Schulze-Pillot, Rainer Siegel modular forms and theta series attached to quaternion algebras, Nagoya Math. J., Tome 121 (1991), pp. 35-96 | MR 1096467 | Zbl 0726.11030

[7] Garrett, Paul B. Pullbacks of Eisenstein series; applications, Automorphic forms of several variables (Katata, 1983), Birkhäuser Boston, Boston, MA (Progr. Math.) Tome 46 (1984), pp. 114-137 | MR 763012 | Zbl 0544.10023

[8] Garrett, Paul B. Integral representations of Eisenstein series and L-functions, Number theory, trace formulas and discrete groups (Oslo, 1987), Academic Press, Boston, MA (1989), pp. 241-264 | MR 993320 | Zbl 0671.10024

[9] Ibukiyama, Tomoyoshi On some alternating sum of dimensions of Siegel cusp forms of general degree and cusp configurations, J. Fac. Sci. Univ. Tokyo Sect. IA Math., Tome 40 (1993) no. 2, pp. 245-283 | MR 1255043 | Zbl 0830.11019

[10] Ibukiyama, Tomoyoshi; Wakatsuki, Satoshi Siegel modular forms of small weight and the Witt operator, Quadratic forms—algebra, arithmetic, and geometry, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 493 (2009), pp. 189-209 | MR 2537101 | Zbl 1244.11049

[11] Katsurada, Hidenori; Schulze-Pillot, Rainer Genus theta series, Hecke operators and the basis problem for Eisenstein series, Automorphic forms and zeta functions, World Sci. Publ., Hackensack, NJ (2006), pp. 234-261 (Proceedings of the conference in memory of T.Arakawa. Ed. S. Böcherer, T. Ibukiyama, M. Kaneko, F. Sato) | MR 2208777 | Zbl 1161.11333

[12] Klein, M. Verschwindungssätze für Hermitesche sowie Siegelsche Modulformen zu Γ 0 n (N) sowie Γ 1 n (N), Saarbrücken (2004) (Ph. D. Thesis)

[13] Miyake, Toshitsune Modular forms, Springer-Verlag, Berlin (1989) (Translated from the Japanese by Yoshitaka Maeda) | MR 1021004 | Zbl 0701.11014

[14] Poor, C.; Yuen, D. S. Dimensions of cusp forms for Γ 0 (p) in degree two and small weights, Abh. Math. Sem. Univ. Hamburg, Tome 77 (2007), pp. 59-80 | Article | MR 2379329 | Zbl 1214.11059

[15] Satake, I. Compactification de espaces quotients de Siegel II, Séminaire Cartan, E. N. S. (1957/58), pp. 1-10 (Exposé 13)

[16] Satake, I. L’opérateur Φ, Séminaire Cartan, E. N. S. (1957/58), pp. 1-18 (Exposé 14)

[17] Satake, I. Surjectivité globale de opérateur Φ, Séminaire Cartan, E. N. S. (1957/58), pp. 1-17 (Exposé 16)

[18] Shimura, Goro Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo (1971) (Kanô Memorial Lectures, No. 1) | MR 314766 | Zbl 0221.10029

[19] Siegel, Carl Ludwig Über die analytische Theorie der quadratischen Formen, Ann. of Math. (2), Tome 36 (1935) no. 3, pp. 527-606 | Article | MR 1503238 | Zbl 0012.19703

[20] Waldspurger, J.-L. Engendrement par des séries thêta de certains espaces de formes modulaires, Invent. Math., Tome 50 (1978/79) no. 2, pp. 135-168 | Article | MR 517775 | Zbl 0393.10025