An introduction to quantum sheaf cohomology
[Une introduction à la cohomologie quantique des faisceaux]
Sharpe, Eric
Annales de l'Institut Fourier, Tome 61 (2011), p. 2985-3005 / Harvested from Numdam

Dans ces notes nous passons en revue la « cohomologie quantique des faisceaux », une déformation de la cohomologie des faisceaux qui apparaît d’une façon similaire à la cohomologie quantique ordinaire (tout en la généralisant parfois). La cohomologie quantique des faisceaux apparaît dans l’étude de la symétrie miroir (0,2), ce qui est passé en revue. Après ça nous passons en revue la théorie standard des champs topologique et les modèles A/2, B/2, dans lesquels la cohomologie quantique des faisceaux apparaît, et esquissons les définitions basiques et les calculs. Ensuite nous discutons dans ce contexte les modèles de supersymétrie Landau-Ginzburg (2,2) et (0,2) ainsi que la cohomologie quantique des faisceaux.

In this note we review “quantum sheaf cohomology,” a deformation of sheaf cohomology that arises in a fashion closely akin to (and sometimes generalizing) ordinary quantum cohomology. Quantum sheaf cohomology arises in the study of (0,2) mirror symmetry, which we review. We then review standard topological field theories and the A/2, B/2 models, in which quantum sheaf cohomology arises, and outline basic definitions and computations. We then discuss (2,2) and (0,2) supersymmetric Landau-Ginzburg models, and quantum sheaf cohomology in that context.

Publié le : 2011-01-01
DOI : https://doi.org/10.5802/aif.2800
Classification:  81T45,  53D45,  14N35
Mots clés: symétrie miroir (0,2), cohomologie quantique des faisceaux, modèle Landau-Ginzburg
@article{AIF_2011__61_7_2985_0,
     author = {Sharpe, Eric},
     title = {An introduction to quantum sheaf cohomology},
     journal = {Annales de l'Institut Fourier},
     volume = {61},
     year = {2011},
     pages = {2985-3005},
     doi = {10.5802/aif.2800},
     zbl = {1270.81200},
     mrnumber = {3112514},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2011__61_7_2985_0}
}
Sharpe, Eric. An introduction to quantum sheaf cohomology. Annales de l'Institut Fourier, Tome 61 (2011) pp. 2985-3005. doi : 10.5802/aif.2800. http://gdmltest.u-ga.fr/item/AIF_2011__61_7_2985_0/

[1] Adams, Allan; Basu, Anirban; Sethi, Savdeep (0,2) duality, Adv. Theor. Math. Phys., Tome 7 (2003) no. 5, pp. 865-950 http://projecteuclid.org/getRecord?id=euclid.atmp/1111510433 | MR 2045304 | Zbl 1058.81064

[2] Adams, Allan; Distler, Jacques; Ernebjerg, Morten Topological heterotic rings, Adv. Theor. Math. Phys., Tome 10 (2006) no. 5, pp. 657-682 http://projecteuclid.org/getRecord?id=euclid.atmp/1175791013 | MR 2281544 | Zbl 1116.81049

[3] Ando, Matt; Sharpe, Eric Elliptic genera of Landau-Ginzburg models over nontrivial spaces (arXiv: 0905.1285)

[4] Blumenhagen, Ralph; Schimmrigk, Rolf; Wißkirchen, Andreas (0,2) mirror symmetry, Nuclear Phys. B, Tome 486 (1997) no. 3, pp. 598-628 | Article | MR 1436158 | Zbl 0925.14014

[5] Blumenhagen, Ralph; Sethi, Savdeep On orbifolds of (0,2) models, Nuclear Phys. B, Tome 491 (1997) no. 1-2, pp. 263-278 | Article | MR 1449061 | Zbl 0925.32013

[6] Donagi, Ron; Guffin, Josh; Katz, Sheldon; Sharpe, Eric A mathematical theory of quantum sheaf cohomology (arXiv: 1110.3751)

[7] Donagi, Ron; Guffin, Josh; Katz, Sheldon; Sharpe, Eric Physical aspects of quantum sheaf cohomology for deformations of tangent bundles of toric varieties (arXiv: 1110.3752)

[8] Donagi, Ron; Sharpe, Eric GLSM’s for partial flag manifolds, J. Geom. Phys., Tome 58 (2008), pp. 1662-1692 | Article | MR 2468445 | Zbl 1218.81091

[9] Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin The Witten equation and its virtual fundamental cycle (arXiv: 0712.4025)

[10] Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin The Witten equation, mirror symmetry, and quantum singularity theory (arXiv: 0712.4021)

[11] Greene, B. R.; Plesser, M. R. Duality in Calabi-Yau moduli space, Nuclear Phys. B, Tome 338 (1990) no. 1, pp. 15-37 | Article | MR 1059831

[12] Guffin, Josh; Katz, Sheldon Deformed quantum cohomology and (0,2) mirror symmetry, J. High Energy Phys. (2010) no. 8, pp. 109, 27 | MR 2756043

[13] Guffin, Josh; Sharpe, Eric A-twisted heterotic Landau-Ginzburg models, J. Geom. Phys., Tome 59 (2009) no. 12, pp. 1581-1596 | Article | MR 2583794 | Zbl 1187.81189

[14] Guffin, Josh; Sharpe, Eric A-twisted Landau-Ginzburg models, J. Geom. Phys., Tome 59 (2009) no. 12, pp. 1547-1580 | Article | MR 2583793 | Zbl 1187.81188

[15] Hori, Kentaro; Vafa, Cumrun Mirror symmetry (hep-th/0002222)

[16] Ito, Kei Topological phase of N=2 superconformal field theory and topological Landau-Ginzburg field theory, Phys. Lett., Tome B250 (1990), pp. 91-95 | Article | MR 1081501

[17] Katz, Sheldon; Sharpe, Eric Notes on certain (0,2) correlation functions, Comm. Math. Phys., Tome 262 (2006) no. 3, pp. 611-644 | Article | MR 2202305 | Zbl 1109.81066

[18] Kontsevich, Maxim Homological algebra of mirror symmetry, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), Birkhäuser, Basel (1995), pp. 120-139 | MR 1403918 | Zbl 0846.53021

[19] Kreuzer, Maximilian; Mcorist, Jock; Melnikov, Ilarion V.; Plesser, M.Ronen (0,2) deformations of linear sigma models, J. High Energy Phys. (2011) no. 7, pp. 044 | Article | MR 2875974

[20] Mcorist, Jock; Melnikov, Ilarion V. Half-twisted correlators from the Coulomb branch, J. High Energy Phys. (2008) no. 4, pp. 071, 19 | Article | MR 2425232 | Zbl 1246.81339

[21] Mcorist, Jock; Melnikov, Ilarion V. Summing the instantons in half-twisted linear sigma models, J. High Energy Phys. (2009) no. 2, pp. 026, 61 | Article | MR 2486403 | Zbl 1245.81249

[22] Melnikov, Ilarion V. (0,2) Landau-Ginzburg models and residues, J. High Energy Phys. (2009) no. 9, pp. 118, 25 | Article | MR 2580690

[23] Melnikov, Ilarion V.; Plesser, M.Ronen A (0,2) mirror map, J. High Energy Phys. (2011) no. 2, pp. 001 | Article | MR 2820839

[24] Melnikov, Ilarion V.; Sethi, Savdeep Half-twisted (0,2) Landau-Ginzburg models, J. High Energy Phys. (2008) no. 3, pp. 040, 21 | Article | MR 2391080

[25] Morrison, David R.; Plesser, M. Ronen Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nuclear Phys. B, Tome 440 (1995) no. 1-2, pp. 279-354 | Article | MR 1336089 | Zbl 0908.14014

[26] Morrison, David R.; Plesser, M. Ronen Towards mirror symmetry as duality for two-dimensional abelian gauge theories, Strings ’95 (Los Angeles, CA, 1995), World Sci. Publ., River Edge, NJ (1996), pp. 374-387 | MR 1660724 | Zbl 0957.81656

[27] Sharpe, Eric Notes on correlation functions in (0,2) theories, Snowbird lectures on string geometry, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 401 (2006), pp. 93-104 | MR 2222532 | Zbl 1172.14331

[28] Sharpe, Eric Notes on certain other (0,2) correlation functions, Adv. Theor. Math. Phys., Tome 13 (2009) no. 1, pp. 33-70 http://projecteuclid.org/getRecord?id=euclid.atmp/1232551519 | MR 2471852 | Zbl 1171.81420

[29] Vafa, Cumrun Topological Landau-Ginzburg models, Mod. Phys. Lett., Tome A6 (1991), pp. 337-346 | Article | MR 1093562 | Zbl 1020.81886

[30] Witten, Edward Mirror manifolds and topological field theory, Essays on mirror manifolds, Int. Press, Hong Kong (1992), pp. 120-158 | MR 1191422 | Zbl 0904.58009