Nous passons en revue notre construction d’une théorie cohomologique des champs pour les singularités quasi-homogènes et la théorie des courbes -spin de Jarvis-Kimura-Vaintrob. De plus, nous prouvons que pour une singularité de type notre construction du champ algébrique des -courbes est canoniquement isomorphe au champ algébrique des courbes -spin décrit par Abramovich et Jarvis. En outre, nous prouvons que notre théorie satisfait tous les axiomes de Jarvis-Kimura-Vaintrob pour une classe virtuelle -spin. Par conséquent, la preuve de Faber-Shadrin-Zvonkine de la conjecture des hiérarchies intégrables de Witten pour les courbes -spin s’applique à notre théorie des singularités de type . C’est-à-dire, la fonction potentielle descendante totale de notre théorie des singularités de type satisfait la hiérarchie intégrable de Gelfand-Dikii.
We give a review of our construction of a cohomological field theory for quasi-homogeneous singularities and the -spin theory of Jarvis-Kimura-Vaintrob. We further prove that for a singularity of type our construction of the stack of -curves is canonically isomorphic to the stack of -spin curves described by Abramovich and Jarvis. We further prove that our theory satisfies all the Jarvis-Kimura-Vaintrob axioms for an -spin virtual class. Therefore, the Faber-Shadrin-Zvonkine proof of the Witten Integrable Hierarchies Conjecture for -spin curves applies to our theory for -type singularities; that is, the total descendant potential function of our theory for -type singularities satisfies the corresponding Gelfand-Dikii integrable hierarchy.
@article{AIF_2011__61_7_2781_0, author = {Fan, Huijun and Jarvis, Tyler and Ruan, Yongbin}, title = {Quantum Singularity Theory for $A\_{(r - 1)}$ and $r$-Spin Theory}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {2781-2802}, doi = {10.5802/aif.2794}, zbl = {pre06193027}, mrnumber = {3112508}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_7_2781_0} }
Fan, Huijun; Jarvis, Tyler; Ruan, Yongbin. Quantum Singularity Theory for $A_{(r - 1)}$ and $r$-Spin Theory. Annales de l'Institut Fourier, Tome 61 (2011) pp. 2781-2802. doi : 10.5802/aif.2794. http://gdmltest.u-ga.fr/item/AIF_2011__61_7_2781_0/
[1] Moduli of twisted spin curves, Proc. of the Amer. Math. Soc., Tome 131 (2003) no. 3, pp. 685-699 | MR 1937405 | Zbl 1037.14008
[2] A new cohomology theory for orbifold, Comm. Math. Phys., Tome 248 (2004) no. 1, pp. 1-31 | MR 2104605 | Zbl 1063.53091
[3] The Witten top Chern class via -theory, J. Alg. Geom., Tome 15 (2006) no. 4, pp. 691-707 | MR 2237266 | Zbl 1117.14008
[4] Tautological relations and the -spin Witten conjecture, Annales Scientifiques de l’École Normal Supérieure. Quatrième Série, Tome 43 (2010) no. 4, pp. 621-658 | Numdam | MR 2722511 | Zbl 1203.53090
[5] The Witten equation, mirror symmetry and quantum singularity theory (Preprint. http://arxiv.org/abs/0712.4021)
[6] singularities and KdV hierarchies, Mosc. Math. J., Tome 3 (2003) no. 2, p. 475-505, 743 | MR 2025270 | Zbl 1054.14067
[7] Geometry of the moduli of higher spin curves, International Journal of Mathematics, Tome 11(5) (2001), pp. 637-663 | MR 1780734 | Zbl 1094.14504
[8] Moduli Spaces of Higher Spin Curves and Integrable Hierarchies, Compositio Mathematica, Tome 126 (2) (2001), pp. 157-212 | MR 1827643 | Zbl 1015.14028
[9] Witten’s conjecture and the Virasoro conjecture for genus up to two, Gromov-Witten theory of spin curves and orbifolds, Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 403 (2006), pp. 31-42 | MR 2234883 | Zbl 1114.14034
[10] Witten’s top Chern class on the moduli space of higher spin curves, Frobenius manifolds, Vieweg, Wiesbaden (Aspects Math., E36) (2004), pp. 253-264 | MR 2115773 | Zbl 1105.14010
[11] Algebraic construction of Witten’s top Chern class, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 276 (2001), pp. 229-249 | MR 1837120 | Zbl 1051.14007
[12] A note on symmetry of singularities, Bull. London Math. Soc., Tome 12 (1980) no. 3, pp. 169-175 | MR 572095 | Zbl 0427.32010
[13] A second note on symmetry of singularities, Bull. London Math. Soc., Tome 12 (1980) no. 5, pp. 347-354 | MR 587705 | Zbl 0424.58006
[14] Two-dimensional gravity and intersection theory on the moduli space, Surveys in Diff. Geom., Tome 1 (1991), pp. 243-310 | MR 1144529 | Zbl 0757.53049
[15] Algebraic geometry associated with matrix models of two-dimensional gravity, Topological models in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX (1993), pp. 235-249 | MR 1215968 | Zbl 0812.14017