Nous décrivons l’anneau tautologique de l’espace des modules des courbes stables de genre un de type compact avec points marqués. On prouve que c’est une algèbre de Gorenstein.
We describe the tautological ring of the moduli space of stable -pointed curves of genus one of compact type. It is proven that it is a Gorenstein algebra.
@article{AIF_2011__61_7_2751_0, author = {Tavakol, Mehdi}, title = {The tautological ring of $M\_{1,n}^{ct}$}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {2751-2779}, doi = {10.5802/aif.2793}, zbl = {pre06193026}, mrnumber = {3112507}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_7_2751_0} }
Tavakol, Mehdi. The tautological ring of $M_{1,n}^{ct}$. Annales de l'Institut Fourier, Tome 61 (2011) pp. 2751-2779. doi : 10.5802/aif.2793. http://gdmltest.u-ga.fr/item/AIF_2011__61_7_2751_0/
[1] Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Inst. Hautes Études Sci. Publ. Math. (1998) no. 88, p. 97-127 (1999) | Numdam | MR 1733327 | Zbl 0991.14012
[2] On the projectivity of the moduli spaces of curves, J. Reine Angew. Math., Tome 443 (1993), pp. 11-20 | Article | MR 1241126 | Zbl 0781.14017
[3] A conjectural description of the tautological ring of the moduli space of curves, Moduli of curves and abelian varieties, Vieweg, Braunschweig (Aspects Math., E33) (1999), pp. 109-129 | MR 1722541 | Zbl 0978.14029
[4] Hodge integrals, tautological classes and Gromov-Witten theory, Proceedings of the Workshop “Algebraic Geometry and Integrable Systems related to String Theory” (Kyoto, 2000) (2001) no. 1232, pp. 78-87 | MR 1905884
[5] A remark on a conjecture of Hain and Looijenga (2008) (Arxiv preprint arXiv:0812.3631) | Zbl 1278.14037
[6] Logarithmic series and Hodge integrals in the tautological ring, Michigan Math. J., Tome 48 (2000), pp. 215-252 (With an appendix by Don Zagier, Dedicated to William Fulton on the occasion of his 60th birthday) | Article | MR 1786488 | Zbl 1090.14005
[7] Hodge integrals, partition matrices, and the conjecture, Annals of mathematics (2003), pp. 97-124 | MR 1954265 | Zbl 1058.14046
[8] Relative maps and tautological classes, J. Eur. Math. Soc. (JEMS), Tome 7 (2005) no. 1, pp. 13-49 | Article | MR 2120989 | Zbl 1084.14054
[9] A compactification of configuration spaces, Ann. of Math. (2), Tome 139 (1994) no. 1, pp. 183-225 | Article | MR 1259368 | Zbl 0820.14037
[10] Intersection theory on and elliptic Gromov-Witten invariants, Journal of the American Mathematical Society, Tome 10 (1997) no. 4, pp. 973 | MR 1451505 | Zbl 0909.14002
[11] Constructions of nontautological classes on moduli spaces of curves, Michigan Math. J., Tome 51 (2003) no. 1, pp. 93-109 | Article | MR 1960923 | Zbl 1079.14511
[12] Relative virtual localization and vanishing of tautological classes on moduli spaces of curves, Duke Math. J., Tome 130 (2005) no. 1, pp. 1-37 | Article | MR 2176546 | Zbl 1088.14007
[13] An interesting 0-cycle, Duke Math. J., Tome 119 (2003) no. 2, pp. 261-313 | Article | MR 1997947 | Zbl 1058.14014
[14] Mapping class groups and moduli spaces of curves, Algebraic geometry—Santa Cruz 1995, Amer. Math. Soc., Providence, RI (Proc. Sympos. Pure Math.) Tome 62 (1997), pp. 97-142 | MR 1492535 | Zbl 0914.14013
[15] On the decomposition of Brauer’s centralizer algebras, J. Algebra, Tome 121 (1989) no. 2, pp. 409-445 | Article | MR 992775 | Zbl 0695.20026
[16] Intersection theory of moduli space of stable -pointed curves of genus zero, Trans. Amer. Math. Soc., Tome 330 (1992) no. 2, pp. 545-574 | Article | MR 1034665 | Zbl 0768.14002
[17] A geometric construction of Getzler’s elliptic relation, Math. Ann., Tome 313 (1999) no. 4, pp. 715-729 | Article | MR 1686935 | Zbl 0933.14035