Contraction par Frobenius de G-modules
Gros, Michel ; Kaneda, Masaharu
Annales de l'Institut Fourier, Tome 61 (2011), p. 2507-2542 / Harvested from Numdam

Soit G un groupe algébrique semi-simple simplement connexe défini sur un corps algébriquement clos 𝕜 de caractéristique positive. Nous donnons une nouvelle preuve de l’existence d’un scindage de Frobenius de la variété des drapeaux de G ainsi que de la nature G-équivariante de celui-ci. L’outil principal est un scindage de l’endomorphisme de Frobenius défini sur toute l’algèbre des distributions de G qui permet de « détordre » la structure des G-modules.

Let G be a simply connected semisimple algebraic group over an algebraically closed field 𝕜 of positive characteristic. We will give a new proof of the Frobenius splitting of the flag variety of G and of its G-equivariant nature. The key tool is a newly found splitting of the Frobenius endomorphism on the algebra of distributions of G allowing us to “untwist” the structure of G-modules.

Publié le : 2011-01-01
DOI : https://doi.org/10.5802/aif.2681
Classification:  14M15,  13A35,  17B10,  20G05,  20G10
Mots clés: scindage de Frobenius, variété des drapeaux, variété de Schubert, algèbre des distributions
@article{AIF_2011__61_6_2507_0,
     author = {Gros, Michel and Kaneda, Masaharu},
     title = {Contraction par Frobenius de $G$-modules},
     journal = {Annales de l'Institut Fourier},
     volume = {61},
     year = {2011},
     pages = {2507-2542},
     doi = {10.5802/aif.2681},
     zbl = {1257.14035},
     mrnumber = {2976319},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_2011__61_6_2507_0}
}
Gros, Michel; Kaneda, Masaharu. Contraction par Frobenius de $G$-modules. Annales de l'Institut Fourier, Tome 61 (2011) pp. 2507-2542. doi : 10.5802/aif.2681. http://gdmltest.u-ga.fr/item/AIF_2011__61_6_2507_0/

[1] Andersen, Henning Haahr; Polo, Patrick; Wen, Ke Xin Representations of quantum algebras, Invent. Math., Tome 104 (1991) no. 1, pp. 1-59 | Article | MR 1094046 | Zbl 0724.17012

[2] Brion, Michel; Kumar, Shrawan Frobenius splitting methods in geometry and representation theory, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 231 (2005) | MR 2107324 | Zbl 1072.14066

[3] Cline, Edward; Parshall, Brian; Scott, Leonard Cohomology, hyperalgebras, and representations, J. Algebra, Tome 63 (1980) no. 1, pp. 98-123 | Article | MR 568566 | Zbl 0434.20024

[4] Enright, T. J.; Wallach, N. R. Notes on homological algebra and representations of Lie algebras, Duke Math. J., Tome 47 (1980) no. 1, pp. 1-15 | Article | MR 563362 | Zbl 0429.17012

[5] Gros, Michel A splitting of the Frobenius morphism on the whole algebra of distributions of SL 2 (à paraître dans Algebras and Represention theory)

[6] Hartshorne, Robin Algebraic geometry, Springer-Verlag, New York (1977) (Graduate Texts in Mathematics, No. 52) | MR 463157 | Zbl 0531.14001

[7] Humphreys, James E. Introduction to Lie algebras and representation theory, Springer-Verlag, New York (1972) (Graduate Texts in Mathematics, Vol. 9) | MR 323842 | Zbl 0447.17001

[8] Jantzen, Jens Carsten Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen, Bonn. Math. Schr. (1973) no. 67, pp. v+124 | MR 401935 | Zbl 0288.17004

[9] Jantzen, Jens Carsten Lectures on quantum groups, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 6 (1996) | MR 1359532 | Zbl 0842.17012

[10] Jantzen, Jens Carsten Representations of algebraic groups, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 107 (2003) | MR 2015057 | Zbl 1034.20041

[11] Kaneda, Masaharu The Frobenius morphism of Schubert schemes, J. Algebra, Tome 174 (1995) no. 2, pp. 473-488 | Article | MR 1334220 | Zbl 0867.14023

[12] Kaneda, Masaharu Cohomology of infinitesimal quantum algebras, J. Algebra, Tome 226 (2000) no. 1, pp. 250-282 | Article | MR 1749888 | Zbl 0981.17013

[13] Kumar, Shrawan; Littelmann, Peter Frobenius splitting in characteristic zero and the quantum Frobenius map, J. Pure Appl. Algebra, Tome 152 (2000) no. 1-3, pp. 201-216 (Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998)) | Article | MR 1783996 | Zbl 0977.17008

[14] Kumar, Shrawan; Littelmann, Peter Algebraization of Frobenius splitting via quantum groups, Ann. of Math. (2), Tome 155 (2002) no. 2, pp. 491-551 | Article | MR 1906594 | Zbl 1078.14074

[15] Littelmann, Peter Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc., Tome 11 (1998) no. 3, pp. 551-567 | Article | MR 1603862 | Zbl 0915.20022

[16] Lusztig, G. Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 82 (1989), pp. 59-77 | MR 982278 | Zbl 0665.20022

[17] Lusztig, George Quantum groups at roots of 1, Geom. Dedicata, Tome 35 (1990) no. 1-3, pp. 89-113 | Article | MR 1066560 | Zbl 0714.17013

[18] Lusztig, George Introduction to quantum groups, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 110 (1993) | MR 1227098 | Zbl pre05288789

[19] Mathieu, Olivier Filtrations of G-modules, Ann. Sci. École Norm. Sup. (4), Tome 23 (1990) no. 4, pp. 625-644 | Numdam | MR 1072820 | Zbl 0748.20026

[20] Mcgerty, Kevin Generalized q-Schur algebras and quantum Frobenius, Adv. Math., Tome 214 (2007) no. 1, pp. 116-131 | Article | MR 2348025 | Zbl 1189.17016

[21] Mehta, V. B.; Ramanathan, A. Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2), Tome 122 (1985) no. 1, pp. 27-40 | Article | MR 799251 | Zbl 0601.14043

[22] Takeuchi, Mitsuhiro Tangent coalgebras and hyperalgebras. I, Japan. J. Math., Tome 42 (1974), pp. 1-143 | MR 389896 | Zbl 0309.14042

[23] Xi, Nanhua Irreducible modules of quantized enveloping algebras at roots of 1, Publ. Res. Inst. Math. Sci., Tome 32 (1996) no. 2, pp. 235-276 | Article | MR 1382803 | Zbl 0874.17013