Soit un groupe algébrique semi-simple simplement connexe défini sur un corps algébriquement clos de caractéristique positive. Nous donnons une nouvelle preuve de l’existence d’un scindage de Frobenius de la variété des drapeaux de ainsi que de la nature -équivariante de celui-ci. L’outil principal est un scindage de l’endomorphisme de Frobenius défini sur toute l’algèbre des distributions de qui permet de « détordre » la structure des -modules.
Let be a simply connected semisimple algebraic group over an algebraically closed field of positive characteristic. We will give a new proof of the Frobenius splitting of the flag variety of and of its -equivariant nature. The key tool is a newly found splitting of the Frobenius endomorphism on the algebra of distributions of allowing us to “untwist” the structure of -modules.
@article{AIF_2011__61_6_2507_0, author = {Gros, Michel and Kaneda, Masaharu}, title = {Contraction par Frobenius de $G$-modules}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {2507-2542}, doi = {10.5802/aif.2681}, zbl = {1257.14035}, mrnumber = {2976319}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_6_2507_0} }
Gros, Michel; Kaneda, Masaharu. Contraction par Frobenius de $G$-modules. Annales de l'Institut Fourier, Tome 61 (2011) pp. 2507-2542. doi : 10.5802/aif.2681. http://gdmltest.u-ga.fr/item/AIF_2011__61_6_2507_0/
[1] Representations of quantum algebras, Invent. Math., Tome 104 (1991) no. 1, pp. 1-59 | Article | MR 1094046 | Zbl 0724.17012
[2] Frobenius splitting methods in geometry and representation theory, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 231 (2005) | MR 2107324 | Zbl 1072.14066
[3] Cohomology, hyperalgebras, and representations, J. Algebra, Tome 63 (1980) no. 1, pp. 98-123 | Article | MR 568566 | Zbl 0434.20024
[4] Notes on homological algebra and representations of Lie algebras, Duke Math. J., Tome 47 (1980) no. 1, pp. 1-15 | Article | MR 563362 | Zbl 0429.17012
[5] A splitting of the Frobenius morphism on the whole algebra of distributions of (à paraître dans Algebras and Represention theory)
[6] Algebraic geometry, Springer-Verlag, New York (1977) (Graduate Texts in Mathematics, No. 52) | MR 463157 | Zbl 0531.14001
[7] Introduction to Lie algebras and representation theory, Springer-Verlag, New York (1972) (Graduate Texts in Mathematics, Vol. 9) | MR 323842 | Zbl 0447.17001
[8] Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen, Bonn. Math. Schr. (1973) no. 67, pp. v+124 | MR 401935 | Zbl 0288.17004
[9] Lectures on quantum groups, American Mathematical Society, Providence, RI, Graduate Studies in Mathematics, Tome 6 (1996) | MR 1359532 | Zbl 0842.17012
[10] Representations of algebraic groups, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 107 (2003) | MR 2015057 | Zbl 1034.20041
[11] The Frobenius morphism of Schubert schemes, J. Algebra, Tome 174 (1995) no. 2, pp. 473-488 | Article | MR 1334220 | Zbl 0867.14023
[12] Cohomology of infinitesimal quantum algebras, J. Algebra, Tome 226 (2000) no. 1, pp. 250-282 | Article | MR 1749888 | Zbl 0981.17013
[13] Frobenius splitting in characteristic zero and the quantum Frobenius map, J. Pure Appl. Algebra, Tome 152 (2000) no. 1-3, pp. 201-216 (Commutative algebra, homological algebra and representation theory (Catania/Genoa/Rome, 1998)) | Article | MR 1783996 | Zbl 0977.17008
[14] Algebraization of Frobenius splitting via quantum groups, Ann. of Math. (2), Tome 155 (2002) no. 2, pp. 491-551 | Article | MR 1906594 | Zbl 1078.14074
[15] Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc., Tome 11 (1998) no. 3, pp. 551-567 | Article | MR 1603862 | Zbl 0915.20022
[16] Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 82 (1989), pp. 59-77 | MR 982278 | Zbl 0665.20022
[17] Quantum groups at roots of , Geom. Dedicata, Tome 35 (1990) no. 1-3, pp. 89-113 | Article | MR 1066560 | Zbl 0714.17013
[18] Introduction to quantum groups, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 110 (1993) | MR 1227098 | Zbl pre05288789
[19] Filtrations of -modules, Ann. Sci. École Norm. Sup. (4), Tome 23 (1990) no. 4, pp. 625-644 | Numdam | MR 1072820 | Zbl 0748.20026
[20] Generalized -Schur algebras and quantum Frobenius, Adv. Math., Tome 214 (2007) no. 1, pp. 116-131 | Article | MR 2348025 | Zbl 1189.17016
[21] Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2), Tome 122 (1985) no. 1, pp. 27-40 | Article | MR 799251 | Zbl 0601.14043
[22] Tangent coalgebras and hyperalgebras. I, Japan. J. Math., Tome 42 (1974), pp. 1-143 | MR 389896 | Zbl 0309.14042
[23] Irreducible modules of quantized enveloping algebras at roots of , Publ. Res. Inst. Math. Sci., Tome 32 (1996) no. 2, pp. 235-276 | Article | MR 1382803 | Zbl 0874.17013