Cet article étudie les composantes des fibres de Springer pour qui sont associées à des orbites fermées de dans la variété de drapeaux de . Ces composantes apparaîssent dans toute fibre de Springer. En contraste avec le cas de composantes arbitraires, ces composantes sont des variétés lisses. En utilisant des résultats de Barchini et Zierau, nous montrons que ces composantes sont des fibrés itérés et sont stables sous l’action d’un tore maximal de . Nous démontrons que si est un fibré en droites sur la variété de drapeaux associée à un poids dominant, alors les groupes de cohomologie de degré supérieur de la restriction de à ces composantes s’annulent. Nous déduisons quelques conséquences des théorèmes de localisation en cohomologie équivariante et -théorie, appliqués à ces composantes. Dans l’appendice, nous indentifions les tableaux correspondants à ces composantes, via la correspondance bijective entre les composantes des fibres de Springer pour et les tableaux standard.
This article studies components of Springer fibers for that are associated to closed orbits of on the flag variety of . These components occur in any Springer fiber. In contrast to the case of arbitrary components, these components are smooth varieties. Using results of Barchini and Zierau we show these components are iterated bundles and are stable under the action of a maximal torus of . We prove that if is a line bundle on the flag variety associated to a dominant weight, then the higher cohomology groups of the restriction of to these components vanish. We derive some consequences of localization theorems in equivariant cohomology and -theory, applied to these components. In the appendix we identify the tableaux corresponding to these components, under the bijective correspondence between components of Springer fibers for and standard tableaux.
@article{AIF_2011__61_5_2139_0, author = {Graham, William and Zierau, R.}, title = {Smooth components of Springer fibers}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {2139-2182}, doi = {10.5802/aif.2669}, zbl = {1248.14056}, mrnumber = {2961851}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_5_2139_0} }
Graham, William; Zierau, R. Smooth components of Springer fibers. Annales de l'Institut Fourier, Tome 61 (2011) pp. 2139-2182. doi : 10.5802/aif.2669. http://gdmltest.u-ga.fr/item/AIF_2011__61_5_2139_0/
[1] The moment map and equivariant cohomology, Topology, Tome 23 (1984) no. 1, pp. 1-28 | Article | MR 721448 | Zbl 0521.58025
[2] Certain components of Springer fibers and associated cycles for discrete series representations of , Represent. Theory, Tome 12 (2008), pp. 403-434 (With an appendix by Peter E. Trapa) | Article | MR 2461236 | Zbl 1186.22017
[3] Linear algebraic groups, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 126 (1991) | MR 204532 | Zbl 0726.20030
[4] Equivariant cohomology and equivariant intersection theory, Representation theories and algebraic geometry (Montreal, PQ, 1997), Kluwer Acad. Publ., Dordrecht (NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci.) Tome 514 (1998), pp. 1-37 (Notes by Alvaro Rittatore) | MR 1649623 | Zbl 0946.14008
[5] Characteristic cycles of discrete series for -rank one groups, Trans. Amer. Math. Soc., Tome 341 (1994) no. 2, pp. 603-622 | Article | MR 1145961 | Zbl 0817.22009
[6] Representation theory and complex geometry, Birkhäuser Boston Inc., Boston, MA (1997) | MR 1433132 | Zbl 1185.22001
[7] Homology of the zero-set of a nilpotent vector field on a flag manifold, J. Amer. Math. Soc., Tome 1 (1988) no. 1, pp. 15-34 | Article | MR 924700 | Zbl 0646.14034
[8] Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math., Tome 120 (1998) no. 3, pp. 619-636 | Article | MR 1623412 | Zbl 0980.14004
[9] Betti numbers of Springer fibers in type , J. Algebra, Tome 322 (2009) no. 7, pp. 2566-2579 | Article | MR 2553695 | Zbl 1186.14051
[10] Singular components of Springer fibers in the two-column case, Ann. Inst. Fourier (Grenoble), Tome 59 (2009) no. 6, pp. 2429-2444 | Article | Numdam | MR 2640925 | Zbl 1191.14060
[11] A unified approach on Springer fibers in the hook, two-row and two-column cases, Transform. Groups, Tome 15 (2010) no. 2, pp. 285-331 | Article | MR 2657444 | Zbl pre05797629
[12] On the topology of components of some Springer fibers and their relation to Kazhdan-Lusztig theory, Adv. Math., Tome 178 (2003) no. 2, pp. 244-276 | Article | MR 1994220 | Zbl 1035.20004
[13] The annihilators of irreducible Harish-Chandra modules for and other type groups, Amer. J. Math., Tome 115 (1993) no. 2, pp. 305-369 | Article | MR 1216434 | Zbl 0786.22023
[14] Equivariant -theory and Schubert varieties (preprint)
[15] Positivity in equivariant Schubert calculus, Duke Math. J., Tome 109 (2001) no. 3, pp. 599-614 | Article | MR 1853356 | Zbl 1069.14055
[16] On positivity in -equivariant -theory of flag varieties, Int. Math. Res. Not. IMRN (2008), pp. Art. ID rnn 093, 43 | MR 2439542 | Zbl 1185.14043
[17] Séminaire de géométrie algébrique. Revêtements étales et groupe fondamental, Springer-Verlag, Heidelberg, Lecture Notes in Mathematics, Tome 224 (1971) | MR 354651
[18] On the homology classes for the components of some fibres of Springer’s resolution, Astérisque (1989) no. 173-174, pp. 257-269 (Orbites unipotentes et représentations, III) | MR 1021513 | Zbl 0704.20038
[19] Algebraic geometry, Springer-Verlag, New York (1977) (Graduate Texts in Mathematics, No. 52) | MR 463157 | Zbl 0531.14001
[20] A fixed point formula for action of tori on algebraic varieties, Invent. Math., Tome 16 (1972), pp. 229-236 | Article | MR 299608 | Zbl 0246.14010
[21] Schubert patches degenerate to subword complexes, Transform. Groups, Tome 13 (2008) no. 3-4, pp. 715-726 | Article | MR 2452612 | Zbl 1200.14099
[22] Kac-Moody groups, their flag varieties and representation theory, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 204 (2002) | MR 1923198 | Zbl 1026.17030
[23] Green polynomials and singularities of unipotent classes, Adv. in Math., Tome 42 (1981) no. 2, pp. 169-178 | Article | MR 641425 | Zbl 0473.20029
[24] Geometric invariant theory, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], Tome 34 (1994) | MR 1304906 | Zbl 0797.14004
[25] Adjacency of Young tableaux and the Springer fibers, Selecta Math. (N.S.), Tome 12 (2006) no. 3-4, pp. 517-540 | MR 2305610 | Zbl 1133.14051
[26] Classes unipotentes et sous-groupes de Borel, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Tome 946 (1982) | MR 672610 | Zbl 0486.20025
[27] Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math., Tome 36 (1976), pp. 173-207 | Article | MR 442103 | Zbl 0374.20054
[28] A construction of representations of Weyl groups, Invent. Math., Tome 44 (1978) no. 3, pp. 279-293 | Article | MR 491988 | Zbl 0376.17002
[29] Contribution to Open problems in algebraic groups (1983) (Taniguchi Foundation, Katata)
[30] An occurrence of the Robinson-Schensted correspondence, J. Algebra, Tome 113 (1988) no. 2, pp. 523-528 | Article | MR 929778 | Zbl 0653.20039
[31] Generalized Robinson-Schensted algorithms for real groups, Internat. Math. Res. Notices (1999) no. 15, pp. 803-834 | Article | MR 1710070 | Zbl 0954.22010
[32] Fixed points under the action of unipotent elements of in the flag variety, Bol. Soc. Mat. Mexicana (2), Tome 24 (1979) no. 1, pp. 1-14 | MR 579665 | Zbl 0458.14019
[33] Cohomologie et -théorie équivariantes des variétés de Bott-Samelson et des variétés de drapeaux, Bull. Soc. Math. France, Tome 132 (2004) no. 4, pp. 569-589 | Numdam | MR 2131904 | Zbl 1087.19004