Soit la suite de Thue–Morse définie sur par , et pour . Soit un entier rationnel. Nous démontrons que l’exposant d’irrationalité du nombre de Thue–Morse–Mahler est égal à .
Let be the Thue–Morse sequence on defined by , and for . Let be an integer. We establish that the irrationality exponent of the Thue–Morse–Mahler number is equal to .
@article{AIF_2011__61_5_2065_0, author = {Bugeaud, Yann}, title = {On the rational approximation to the Thue--Morse--Mahler numbers}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {2065-2076}, doi = {10.5802/aif.2666}, zbl = {1271.11074}, mrnumber = {2961848}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_5_2065_0} }
Bugeaud, Yann. On the rational approximation to the Thue–Morse–Mahler numbers. Annales de l'Institut Fourier, Tome 61 (2011) pp. 2065-2076. doi : 10.5802/aif.2666. http://gdmltest.u-ga.fr/item/AIF_2011__61_5_2065_0/
[1] On the expansion of some exponential periods in an integer base, Math. Ann., Tome 346 (2010) no. 1, pp. 107-116 | Article | MR 2558889 | Zbl pre05661736
[2] Diophantine properties of real numbers generated by finite automata, Compos. Math., Tome 142 (2006) no. 6, pp. 1351-1372 | Article | MR 2278750 | Zbl 1134.11011
[3] Irrationality measures for some automatic real numbers, Math. Proc. Cambridge Philos. Soc., Tome 147 (2009) no. 3, pp. 659-678 | Article | MR 2557148 | Zbl 1205.11080
[4] A remarkable class of continued fractions, Proc. Amer. Math. Soc., Tome 65 (1977) no. 2, pp. 194-198 | Article | MR 441879 | Zbl 0366.10027
[5] Hankel determinants of the Thue-Morse sequence, Ann. Inst. Fourier (Grenoble), Tome 48 (1998) no. 1, pp. 1-27 | Article | Numdam | MR 1614914 | Zbl 0974.11010
[6] Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press (2003) | MR 1997038 | Zbl 1086.11015
[7] Approximation to certain transcendental decimal fractions by algebraic numbers, J. Number Theory, Tome 37 (1991) no. 2, pp. 231-241 | Article | MR 1092608 | Zbl 0718.11030
[8] Padé approximants, Cambridge University Press, Cambridge, Encyclopedia of Mathematics and its Applications, Tome 59 (1996) | Article | MR 1383091 | Zbl 0923.41001
[9] Initial powers of Sturmian sequences, Acta Arith., Tome 122 (2006) no. 4, pp. 315-347 | Article | MR 2234421 | Zbl 1117.37005
[10] Padé-type approximation and general orthogonal polynomials, Birkhäuser Verlag, Basel, International Series of Numerical Mathematics, Tome 50 (1980) | MR 561106 | Zbl 0418.41012
[11] Diophantine approximation and Cantor sets, Math. Ann., Tome 341 (2008) no. 3, pp. 677-684 | Article | MR 2399165 | Zbl 1163.11056
[12] Morphic and Automatic Words: Maximal Blocks and Diophantine Approximation (Preprint) | Zbl pre05908266
[13] Über eine Klasse reeller transzendenter Zahlen mit explizit angebbarer -adischer und Kettenbruch-Entwicklung, J. Reine Angew. Math., Tome 318 (1980), pp. 110-119 | Article | MR 579386 | Zbl 0425.10038
[14] Transcendance du nombre de Thue-Morse, C. R. Acad. Sci. Paris Sér. A-B, Tome 285 (1977) no. 4, p. A157-A160 | MR 457363 | Zbl 0362.10028
[15] On a problem of K. Mahler: Diophantine approximation and Cantor sets, Math. Ann., Tome 338 (2007) no. 1, pp. 97-118 | Article | MR 2295506 | Zbl 1115.11040
[16] Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann., Tome 101 (1929) no. 1, pp. 342-366 | Article | MR 1512537
[17] Simple continued fractions for some irrational numbers, J. Number Theory, Tome 11 (1979) no. 2, pp. 209-217 | Article | MR 535392 | Zbl 0404.10003
[18] The on-line encyclopedia of integer sequences, Notices Amer. Math. Soc., Tome 50 (2003) no. 8, pp. 912-915 | MR 1992789 | Zbl 1044.11108