On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups
[Vecteurs analytiques pour les représentations unitaires des groups de Lie à dimension infinie]
Neeb, Karl-H.
Annales de l'Institut Fourier, Tome 61 (2011), p. 1839-1874 / Harvested from Numdam

Soit G un groupe de Lie–Banach connexe et simplement connexe. Sur l’algèbre enveloppante complexe de son algèbre de Lie 𝔤 nous définissons la notion de fonctionnelle analytique et montrons que chaque fonctionnelle analytique positive λ est integrable au sens où elle est de la forme λ(D)=dπ(D)v,v pour un vecteur analytique v d’une représentation unitaire de G. Dans la preuve de ce résultat nous obtenons des critères pour l’integrabilité des *-representations des algèbres de Lie en représentations de groupe unitaires.

Pour le coefficient matriciel π v,v (g)=π(g)v,v d’un vecteur v d’une représentation unitaire d’un groupe de Lie–Fréchet analytique G nous montrons que v est un vecteur analytique si et seulement si π v,v est analytique dans un voisinage de l’identité. En combinant ce résultat à ceux sur les fonctionnelles analytiques positives nous obtenons que chaque fonction analytique de type positive locale sur un group de Lie–Fréchet–BCH simplement connexe s’étend en une fonction analytique globale.

Let G be a connected and simply connected Banach–Lie group. On the complex enveloping algebra of its Lie algebra 𝔤 we define the concept of an analytic functional and show that every positive analytic functional λ is integrable in the sense that it is of the form λ(D)=dπ(D)v,v for an analytic vector v of a unitary representation of G. On the way to this result we derive criteria for the integrability of *-representations of infinite dimensional Lie algebras of unbounded operators to unitary group representations.

For the matrix coefficient π v,v (g)=π(g)v,v of a vector v in a unitary representation of an analytic Fréchet–Lie group G we show that v is an analytic vector if and only if π v,v is analytic in an identity neighborhood. Combining this insight with the results on positive analytic functionals, we derive that every local positive definite analytic function on a simply connected Fréchet–BCH–Lie group G extends to a global analytic function.

Publié le : 2011-01-01
DOI : https://doi.org/10.5802/aif.2660
Classification:  22E65,  22E45
Mots clés: groupe de Lie de dimension infinie, représentation unitaire, fonction de type positif, vecteur analytique, integrabilité d’une représentation d’une algèbre de Lie
@article{AIF_2011__61_5_1839_0,
     author = {Neeb, Karl-H.},
     title = {On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups},
     journal = {Annales de l'Institut Fourier},
     volume = {61},
     year = {2011},
     pages = {1839-1874},
     doi = {10.5802/aif.2660},
     zbl = {1241.22023},
     mrnumber = {2961842},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2011__61_5_1839_0}
}
Neeb, Karl-H. On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1839-1874. doi : 10.5802/aif.2660. http://gdmltest.u-ga.fr/item/AIF_2011__61_5_1839_0/

[1] Abouqateb, A.; Neeb, K.-H. Integration of locally exponential Lie algebras of vector fields, Annals Global Analysis Geom., Tome 33:1 (2008), pp. 89-100 | Article | MR 2369188 | Zbl 1135.22021

[2] Akhiezer, N. I. The Classical Moment Problem, Oliver and Boyd, Edinburgh (1965)

[3] Beltita, D.; Neeb, K.-H. A non-smooth continuous unitary representation of a Banach–Lie group, J. Lie Theory, Tome 18 (2008), pp. 933-936 | MR 2523145 | Zbl 1203.22013

[4] Berg, C.; Christensen, J.P.R.; Ressel, P. Harmonic analysis on semigroups, Springer Verlag, Berlin, Heidelberg, New York, Graduate Texts in Math., Tome 100 (1984) | MR 747302 | Zbl 0619.43001

[5] Bochnak, J.; Siciak, J. Analytic functions in topological vector spaces, Studia Math., Tome 39 (1971), pp. 77-112 | MR 313811 | Zbl 0214.37703

[6] Bochnak, J.; Siciak, J. Polynomials and multilinear mappings in topological vector spaces, Studia Math., Tome 39 (1971), pp. 59-76 | MR 313810 | Zbl 0214.37702

[7] Borchers, H.-J.; Yngvason, J. Integral representations of Schwinger functionals and the moment problem over nuclear spaces, Comm. math. Phys., Tome 43:3 (1975), pp. 255-271 | Article | MR 383099 | Zbl 0307.46054

[8] Bourbaki, N. Lie Groups and Lie Algebras, Chapter 1–3, Springer Verlag, Berlin (1989) | MR 979493 | Zbl 0672.22001

[9] Bourbaki, N. Espaces vectoriels topologiques. Chap.1 à 5, Springer Verlag, Berlin (2007)

[10] Cartier, P.; Dixmier, J. Vecteurs analytiques dans les représentations de groupes de Lie, Amer. J. Math., Tome 80 (1958), pp. 131-145 | Article | MR 94406 | Zbl 0081.11204

[11] Driver, B.; Gordina, M. Square integrable holomorphic functions on infinite-dimensional Heisenberg type groups (arXiv:math.PR.0809.4979v1)

[12] Van Est, W. T.; Korthagen, Th. J. Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. Series A, Indag. Math., Tome 26 (1964), pp. 15-31 | MR 160851 | Zbl 0121.27503

[13] Faraut, J. Infinite Dimensional Spherical Analysis, Kyushu Univ., COE Lectures Note, Tome 10 (2008) | MR 2391335 | Zbl 1154.43008

[14] Flato, M.; Simon, J.; Snellman, H.; Sternheimer, D. Simple facts about analytic vectors and integrability, Ann. Sci. École Norm. Sup. (4), Tome 5 (1972), pp. 423-434 | Numdam | MR 376960 | Zbl 0239.22019

[15] Gårding, L. Vecteurs analytiques dans les représentations des groupes de Lie, Bull. Soc. Math. France, Tome 88 (1960), pp. 73-93 | Numdam | MR 119104 | Zbl 0095.10402

[16] Glöckner, H. Infinite-dimensional Lie groups without completeness restrictions, Geometry and Analysis on Finite and Infinite-dimensional Lie Groups, A. Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb (Eds.), Banach Center Publications, Tome 55 (2002), pp. 43-59 | MR 1911976 | Zbl 1020.58009

[17] Glöckner, H.; Neeb, K.-H. Infinite dimensional Lie groups, Vol. I, Basic Theory and Main Examples (book in preparation)

[18] Goodman, F.; Jørgensen, P. E. T. Lie algebras of unbounded derivations, J. Funct. Anal., Tome 52 (1983), pp. 369-384 | Article | MR 712587 | Zbl 0515.46059

[19] Goodman, R. W. Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc., Tome 143 (1969), pp. 55-76 | Article | MR 248285 | Zbl 0189.14102

[20] Hegerfeldt, G. C. Gårding domains and analytic vectors for quantum fields, J. Math. Phys., Tome 13 (1972), pp. 821-827 | Article | MR 300571 | Zbl 0239.46030

[21] Hegerfeldt, G. C. Extremal decompositions of Wightman functions and of states on nuclear *-algebras by Choquet theory, Comm. Math. Phys., Tome 54:2 (1975), pp. 133-135 | Article | MR 454672 | Zbl 0315.46064

[22] Jørgensen, P. E. T. Operators and Representation Theory, North-Holland, Math. Studies, Tome 147 (1988)

[23] Jørgensen, P.E.T. Analytic continuation of local representations of Lie groups, Pac. J. Math., Tome 125:2 (1986), pp. 397-408 | MR 863534 | Zbl 0559.22011

[24] Jørgensen, P.E.T. Analytic continuation of local representations of symmetric spaces, J. Funct. Anal., Tome 70 (1987), pp. 304-322 | Article | MR 874059 | Zbl 0608.22010

[25] Jørgensen, P.E.T. Integral representations for locally defined positive definite functions on Lie groups, Int. J. Math., Tome 2:3 (1991), pp. 257-286 | Article | MR 1104120 | Zbl 0764.43001

[26] Krein, M. G. Hermitian positive definite kernels on homogeneous spaces I, Amer. Math. Soc. Transl. Ser. 2, Tome 34 (1963), pp. 69-108 | Zbl 0131.12101

[27] Lüscher, M.; Mack, G. Global conformal invariance and quantum field theory, Comm. Math. Phys., Tome 41 (1975), pp. 203-234 | Article | MR 371282

[28] Magyar, M. Continuous Linear Representations, North-Holland, Math. Studies, Tome 168 (1992) | MR 1150050 | Zbl 0793.22007

[29] Merigon, S. Integrating representations of Banach–Lie algebras (arXiv:math.RT.1003.0999v1, 4 Mar 2010)

[30] Milnor, J. Remarks on infinite-dimensional Lie groups, in DeWitt, B., Stora, R. (eds), “Relativité, groupes et topologie II” (Les Houches, 1983), North Holland, Amsterdam, 1984; 1007–1057

[31] Moore, R. T. Measurable, continuous and smooth vectors for semigroup and group representations, Memoirs of the Amer. Math. Soc., Tome 19 (1968), pp. 1-80 | MR 229091 | Zbl 0165.48601

[32] Müller, C.; Neeb, K.-H.; Seppänen, H. Borel–Weil Theory for Root Graded Banach–Lie groups, Int. Math. Res. Not., Tome 2010:5 (2010), pp. 783-823 | MR 2595011 | Zbl 1187.22017

[33] Neeb, K.-H. Holomorphy and Convexity in Lie Theory, de Gruyter Verlag, Berlin, Exp. in Math. series, Tome 28 (2000) | MR 1740617 | Zbl 0936.22001

[34] Neeb, K.-H. Towards a Lie theory of locally convex groups, Jap. J. Math. 3rd ser., Tome 1:2 (2006), pp. 291-468 | MR 2261066 | Zbl 1161.22012

[35] Neeb, K.-H. On differentiable vectors for representations of infinite dimensional Lie groups, J. Funct. Anal., Tome 259 (2010), pp. 2814-2855 | Article | MR 2719276 | Zbl 1204.22016

[36] Nelson, E. Analytic vectors, Annals of Math., Tome 70:3 (1959), pp. 572-615 | Article | MR 107176 | Zbl 0091.10704

[37] Olshanski, G. I.; Vershik, A. M.; Zhelobenko, D. P. Unitary representations of infinite dimensional (G,K)-pairs and the formalism of R. Howe, Representations of Lie Groups and Related Topics, Gordon and Breach Science Publ., Tome 7 (1990) | MR 1104279 | Zbl 0724.22020

[38] Olshanski, G. I. On semigroups related to infinite dimensional groups, Topics in representation theory, Amer. Math. Soc., , Adv. Sov. mathematics, Tome 2 (1991), pp. 67-101 | MR 1104938 | Zbl 0736.22014

[39] Powers, R.T. Self-adjoint algebras of unbounded operators, Comm. Math. Phys., Tome 21 (1971), pp. 85-124 | Article | MR 283580 | Zbl 0214.14102

[40] Powers, R.T. Selfadjoint algebras of unbounded operators, II, Trans. Amer. Math. Soc., Tome 187:1 (1974), pp. 261-293 | MR 333743 | Zbl 0296.46059

[41] Reed., M. C. A Gårding domain for quantum fields, Comm. Math. Phys., Tome 14 (1969), pp. 336-346 | Article | MR 250616 | Zbl 0186.28303

[42] Reed, S.; Simon, B. Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness, Academic Press, New York (1975) | Zbl 0242.46001

[43] Rudin, W. Functional Analysis, McGraw Hill (1973) | MR 365062 | Zbl 0867.46001

[44] Samoilenko, Y. S. Spectral Theory of Families of Self-Adjoint Operators, Kluwer Acad. Publ., Mathematics and its Applications (Soviet Series) (1991) | MR 1135325

[45] Schmüdgen, K. Positive cones in enveloping algebras, Reports Math. Phys., Tome 14 (1978), pp. 385-404 | Article | MR 530471 | Zbl 0424.46040

[46] Schmüdgen, K. Unbounded Operator Algebras and Representation Theory, Birkhäuser Verlag, Basel, Mathematics and its Applications (Soviet Series), Tome 37 (1990) | MR 1056697 | Zbl 0697.47048

[47] Shiryaev, A. N. Probability, Springer, 2nd Edition, Graduate Texts in Math., Tome 95 (1996) | MR 1368405 | Zbl 0835.60002

[48] Simon, J. On the integrability of representations of finite dimensional real Lie algebras, Comm. Math. Phys., Tome 28 (1972), pp. 39-46 | Article | MR 308333 | Zbl 0239.22020

[49] Warner, G. Harmonic analysis on semisimple Lie groups I, Springer Verlag, Berlin, Heidelberg, New York (1972) | Zbl 0265.22020