Soit un groupe de Lie–Banach connexe et simplement connexe. Sur l’algèbre enveloppante complexe de son algèbre de Lie nous définissons la notion de fonctionnelle analytique et montrons que chaque fonctionnelle analytique positive est integrable au sens où elle est de la forme pour un vecteur analytique d’une représentation unitaire de . Dans la preuve de ce résultat nous obtenons des critères pour l’integrabilité des -representations des algèbres de Lie en représentations de groupe unitaires.
Pour le coefficient matriciel d’un vecteur d’une représentation unitaire d’un groupe de Lie–Fréchet analytique nous montrons que est un vecteur analytique si et seulement si est analytique dans un voisinage de l’identité. En combinant ce résultat à ceux sur les fonctionnelles analytiques positives nous obtenons que chaque fonction analytique de type positive locale sur un group de Lie–Fréchet–BCH simplement connexe s’étend en une fonction analytique globale.
Let be a connected and simply connected Banach–Lie group. On the complex enveloping algebra of its Lie algebra we define the concept of an analytic functional and show that every positive analytic functional is integrable in the sense that it is of the form for an analytic vector of a unitary representation of . On the way to this result we derive criteria for the integrability of -representations of infinite dimensional Lie algebras of unbounded operators to unitary group representations.
For the matrix coefficient of a vector in a unitary representation of an analytic Fréchet–Lie group we show that is an analytic vector if and only if is analytic in an identity neighborhood. Combining this insight with the results on positive analytic functionals, we derive that every local positive definite analytic function on a simply connected Fréchet–BCH–Lie group extends to a global analytic function.
@article{AIF_2011__61_5_1839_0, author = {Neeb, Karl-H.}, title = {On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {1839-1874}, doi = {10.5802/aif.2660}, zbl = {1241.22023}, mrnumber = {2961842}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_5_1839_0} }
Neeb, Karl-H. On Analytic Vectors for Unitary Representations of Infinite Dimensional Lie Groups. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1839-1874. doi : 10.5802/aif.2660. http://gdmltest.u-ga.fr/item/AIF_2011__61_5_1839_0/
[1] Integration of locally exponential Lie algebras of vector fields, Annals Global Analysis Geom., Tome 33:1 (2008), pp. 89-100 | Article | MR 2369188 | Zbl 1135.22021
[2] The Classical Moment Problem, Oliver and Boyd, Edinburgh (1965)
[3] A non-smooth continuous unitary representation of a Banach–Lie group, J. Lie Theory, Tome 18 (2008), pp. 933-936 | MR 2523145 | Zbl 1203.22013
[4] Harmonic analysis on semigroups, Springer Verlag, Berlin, Heidelberg, New York, Graduate Texts in Math., Tome 100 (1984) | MR 747302 | Zbl 0619.43001
[5] Analytic functions in topological vector spaces, Studia Math., Tome 39 (1971), pp. 77-112 | MR 313811 | Zbl 0214.37703
[6] Polynomials and multilinear mappings in topological vector spaces, Studia Math., Tome 39 (1971), pp. 59-76 | MR 313810 | Zbl 0214.37702
[7] Integral representations of Schwinger functionals and the moment problem over nuclear spaces, Comm. math. Phys., Tome 43:3 (1975), pp. 255-271 | Article | MR 383099 | Zbl 0307.46054
[8] Lie Groups and Lie Algebras, Chapter 1–3, Springer Verlag, Berlin (1989) | MR 979493 | Zbl 0672.22001
[9] Espaces vectoriels topologiques. Chap.1 à 5, Springer Verlag, Berlin (2007)
[10] Vecteurs analytiques dans les représentations de groupes de Lie, Amer. J. Math., Tome 80 (1958), pp. 131-145 | Article | MR 94406 | Zbl 0081.11204
[11] Square integrable holomorphic functions on infinite-dimensional Heisenberg type groups (arXiv:math.PR.0809.4979v1)
[12] Non enlargible Lie algebras, Proc. Kon. Ned. Acad. v. Wet. Series A, Indag. Math., Tome 26 (1964), pp. 15-31 | MR 160851 | Zbl 0121.27503
[13] Infinite Dimensional Spherical Analysis, Kyushu Univ., COE Lectures Note, Tome 10 (2008) | MR 2391335 | Zbl 1154.43008
[14] Simple facts about analytic vectors and integrability, Ann. Sci. École Norm. Sup. (4), Tome 5 (1972), pp. 423-434 | Numdam | MR 376960 | Zbl 0239.22019
[15] Vecteurs analytiques dans les représentations des groupes de Lie, Bull. Soc. Math. France, Tome 88 (1960), pp. 73-93 | Numdam | MR 119104 | Zbl 0095.10402
[16] Infinite-dimensional Lie groups without completeness restrictions, Geometry and Analysis on Finite and Infinite-dimensional Lie Groups, A. Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb (Eds.), Banach Center Publications, Tome 55 (2002), pp. 43-59 | MR 1911976 | Zbl 1020.58009
[17] Infinite dimensional Lie groups, Vol. I, Basic Theory and Main Examples (book in preparation)
[18] Lie algebras of unbounded derivations, J. Funct. Anal., Tome 52 (1983), pp. 369-384 | Article | MR 712587 | Zbl 0515.46059
[19] Analytic and entire vectors for representations of Lie groups, Trans. Amer. Math. Soc., Tome 143 (1969), pp. 55-76 | Article | MR 248285 | Zbl 0189.14102
[20] Gårding domains and analytic vectors for quantum fields, J. Math. Phys., Tome 13 (1972), pp. 821-827 | Article | MR 300571 | Zbl 0239.46030
[21] Extremal decompositions of Wightman functions and of states on nuclear -algebras by Choquet theory, Comm. Math. Phys., Tome 54:2 (1975), pp. 133-135 | Article | MR 454672 | Zbl 0315.46064
[22] Operators and Representation Theory, North-Holland, Math. Studies, Tome 147 (1988)
[23] Analytic continuation of local representations of Lie groups, Pac. J. Math., Tome 125:2 (1986), pp. 397-408 | MR 863534 | Zbl 0559.22011
[24] Analytic continuation of local representations of symmetric spaces, J. Funct. Anal., Tome 70 (1987), pp. 304-322 | Article | MR 874059 | Zbl 0608.22010
[25] Integral representations for locally defined positive definite functions on Lie groups, Int. J. Math., Tome 2:3 (1991), pp. 257-286 | Article | MR 1104120 | Zbl 0764.43001
[26] Hermitian positive definite kernels on homogeneous spaces I, Amer. Math. Soc. Transl. Ser. 2, Tome 34 (1963), pp. 69-108 | Zbl 0131.12101
[27] Global conformal invariance and quantum field theory, Comm. Math. Phys., Tome 41 (1975), pp. 203-234 | Article | MR 371282
[28] Continuous Linear Representations, North-Holland, Math. Studies, Tome 168 (1992) | MR 1150050 | Zbl 0793.22007
[29] Integrating representations of Banach–Lie algebras (arXiv:math.RT.1003.0999v1, 4 Mar 2010)
[30] Remarks on infinite-dimensional Lie groups, in DeWitt, B., Stora, R. (eds), “Relativité, groupes et topologie II” (Les Houches, 1983), North Holland, Amsterdam, 1984; 1007–1057
[31] Measurable, continuous and smooth vectors for semigroup and group representations, Memoirs of the Amer. Math. Soc., Tome 19 (1968), pp. 1-80 | MR 229091 | Zbl 0165.48601
[32] Borel–Weil Theory for Root Graded Banach–Lie groups, Int. Math. Res. Not., Tome 2010:5 (2010), pp. 783-823 | MR 2595011 | Zbl 1187.22017
[33] Holomorphy and Convexity in Lie Theory, de Gruyter Verlag, Berlin, Exp. in Math. series, Tome 28 (2000) | MR 1740617 | Zbl 0936.22001
[34] Towards a Lie theory of locally convex groups, Jap. J. Math. 3rd ser., Tome 1:2 (2006), pp. 291-468 | MR 2261066 | Zbl 1161.22012
[35] On differentiable vectors for representations of infinite dimensional Lie groups, J. Funct. Anal., Tome 259 (2010), pp. 2814-2855 | Article | MR 2719276 | Zbl 1204.22016
[36] Analytic vectors, Annals of Math., Tome 70:3 (1959), pp. 572-615 | Article | MR 107176 | Zbl 0091.10704
[37] Unitary representations of infinite dimensional -pairs and the formalism of R. Howe, Representations of Lie Groups and Related Topics, Gordon and Breach Science Publ., Tome 7 (1990) | MR 1104279 | Zbl 0724.22020
[38] On semigroups related to infinite dimensional groups, Topics in representation theory, Amer. Math. Soc., , Adv. Sov. mathematics, Tome 2 (1991), pp. 67-101 | MR 1104938 | Zbl 0736.22014
[39] Self-adjoint algebras of unbounded operators, Comm. Math. Phys., Tome 21 (1971), pp. 85-124 | Article | MR 283580 | Zbl 0214.14102
[40] Selfadjoint algebras of unbounded operators, II, Trans. Amer. Math. Soc., Tome 187:1 (1974), pp. 261-293 | MR 333743 | Zbl 0296.46059
[41] A Gårding domain for quantum fields, Comm. Math. Phys., Tome 14 (1969), pp. 336-346 | Article | MR 250616 | Zbl 0186.28303
[42] Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness, Academic Press, New York (1975) | Zbl 0242.46001
[43] Functional Analysis, McGraw Hill (1973) | MR 365062 | Zbl 0867.46001
[44] Spectral Theory of Families of Self-Adjoint Operators, Kluwer Acad. Publ., Mathematics and its Applications (Soviet Series) (1991) | MR 1135325
[45] Positive cones in enveloping algebras, Reports Math. Phys., Tome 14 (1978), pp. 385-404 | Article | MR 530471 | Zbl 0424.46040
[46] Unbounded Operator Algebras and Representation Theory, Birkhäuser Verlag, Basel, Mathematics and its Applications (Soviet Series), Tome 37 (1990) | MR 1056697 | Zbl 0697.47048
[47] Probability, Springer, 2nd Edition, Graduate Texts in Math., Tome 95 (1996) | MR 1368405 | Zbl 0835.60002
[48] On the integrability of representations of finite dimensional real Lie algebras, Comm. Math. Phys., Tome 28 (1972), pp. 39-46 | Article | MR 308333 | Zbl 0239.22020
[49] Harmonic analysis on semisimple Lie groups I, Springer Verlag, Berlin, Heidelberg, New York (1972) | Zbl 0265.22020