À chaque nombre complexe est associée une représentation du groupe conforme sur (série principale sphérique). Pour chaque triplet , nous construisons une forme trilinéaire sur qui est invariante par . La forme trilinéaire, d’abord définie dans un ouvert de est étendue méromorphiquement, avec des pôles simples en une famille explicite de plans de . Pour les valeurs génériques des paramètres, nous démontrons l’unicité d’une telle forme trilinéaire invariante.
To each complex number is associated a representation of the conformal group on (spherical principal series). For three values , we construct a trilinear form on , which is invariant by . The trilinear form, first defined for in an open set of is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.
@article{AIF_2011__61_5_1807_0, author = {Clerc, Jean-Louis and \O rsted, Bent}, title = {Conformally invariant trilinear forms on the sphere}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {1807-1838}, doi = {10.5802/aif.2659}, zbl = {1252.22008}, mrnumber = {2961841}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_5_1807_0} }
Clerc, Jean-Louis; Ørsted, Bent. Conformally invariant trilinear forms on the sphere. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1807-1838. doi : 10.5802/aif.2659. http://gdmltest.u-ga.fr/item/AIF_2011__61_5_1807_0/
[1] Estimates of automorphic functions, Mosc. Math. J., Tome 4 (2004) no. 1, pp. 19-37 | MR 2074982 | Zbl 1081.11037
[2] Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France, Tome 84 (1956), pp. 97-205 | Numdam | MR 84713 | Zbl 0074.10303
[3] Generalized Bernstein- Reznikov integrals (to be published in Mathematische Annalen, DOI 10.1007/ s0028-010-0516-4)
[4] Orbits of triples in the Shilov boundary of a bounded symmetric domain, Transform. Groups, Tome 11 (2006) no. 3, pp. 387-426 | Article | MR 2264460 | Zbl 1112.32010
[5] Invariant triple products, Int. J. Math. Math. Sci. (2006), pp. 22 (Art. ID 48274) | Article | MR 2251763 | Zbl 1140.22018
[6] Generalized functions. Vol. 1, Academic Press [Harcourt Brace Jovanovich Publishers], New York (1964 [1977]) (Properties and operations, Translated from the Russian by Eugene Saletan) | MR 166596 | Zbl 0115.33101
[7] The analysis of linear partial differential operators. I, Springer-Verlag, Berlin, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Tome 256 (1983) (Distribution theory and Fourier analysis) | MR 717035 | Zbl 0521.35001
[8] On the transverse symbol of vectorial distributions and some applications to harmonic analysis, Indag. Math. (N.S.), Tome 7 (1996) no. 1, pp. 67-96 | Article | MR 1621372 | Zbl 0892.22010
[9] On spherical double cones, J. Algebra, Tome 166 (1994) no. 1, pp. 142-157 | Article | MR 1276821 | Zbl 0823.20040
[10] Trilinear forms of , Pacific J. Math., Tome 197 (2001) no. 1, pp. 119-144 | Article | MR 1810211 | Zbl 1049.22007
[11] Multiple flag varieties of finite type, Adv. Math., Tome 141 (1999) no. 1, pp. 97-118 | Article | MR 1667147 | Zbl 0951.14034
[12] Tensor products of unitary representations of the three-dimensional Lorentz group, Izv. Akad. Nauk SSSR Ser. Mat., Tome 43 (1979) no. 4, p. 860-891, 967 | MR 548507 | Zbl 0448.22010
[13] Trilinear Lorentz invariant forms, Comm. Math. Phys., Tome 29 (1973), pp. 189-217 | Article | MR 340478
[14] Polynômes de Bernstein-Sato à plusieurs variables, Séminaire sur les équations aux dérivées partielles 1986–1987, École Polytech., Palaiseau (1987) (Exp. No. XIX, 6) | Numdam | MR 920037 | Zbl 0634.32003
[15] Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France, Tome 91 (1963), pp. 289-433 | Numdam | MR 179296 | Zbl 0196.15501
[16] The principal series for a reductive symmetric space. I. -fixed distribution vectors, Ann. Sci. École Norm. Sup. (4), Tome 21 (1988) no. 3, pp. 359-412 | Numdam | MR 974410 | Zbl 0714.22009
[17] Harmonic analysis on homogeneous spaces, Marcel Dekker Inc., New York (1973) (Pure and Applied Mathematics, No. 19) | MR 498996 | Zbl 0265.22022
[18] Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York (1972) (Die Grundlehren der mathematischen Wissenschaften, Band 188) | MR 498999 | Zbl 0265.22020