Le cut locus d’une variété Finslerienne peut être non-triangulable, mais une description locale à tous les points sauf pour un ensemble de dimension de Hausdorff est bien connu. Nous donnons une nouvelle description de la structure de ces ensembles, avec des applications directes pour les ensembles des points singuliers de certaines équations de Hamilton-Jacobi. Nous donnons une classification de tous les points sauf pour un ensemble de dimension de Hausdorff .
We give a new and detailed description of the structure of cut loci, with direct applications to the singular sets of some Hamilton-Jacobi equations. These sets may be non-triangulable, but a local description at all points except for a set of Hausdorff dimension is well known. We go further in this direction by giving a classification of all points up to a set of Hausdorff dimension .
@article{AIF_2011__61_4_1655_0, author = {Ardoy, Pablo Angulo and Guijarro, Luis}, title = {Cut and singular loci up to codimension 3}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {1655-1681}, doi = {10.5802/aif.2655}, zbl = {1242.35095}, mrnumber = {2951748}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_4_1655_0} }
Ardoy, Pablo Angulo; Guijarro, Luis. Cut and singular loci up to codimension 3. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1655-1681. doi : 10.5802/aif.2655. http://gdmltest.u-ga.fr/item/AIF_2011__61_4_1655_0/
[1] On the singularities of convex functions, Comm. Pure Appl. Math., Tome 76 (1992), pp. 421-435 | MR 1185029 | Zbl 0784.49011
[2] Balanced split sets and Hamilton Jacobi equations (http://arxiv.org/abs/0807.2046, (2008-2009) (to appear in Calc. Var. Partial Differential Equations))
[3] Some consequences of the nature of the distance function on the cut locus in a riemannian manifold, J. London Math. Soc. (2), Tome 56 (1997) no. 2, pp. 369-383 | Article | MR 1489143 | Zbl 0892.53021
[4] The structure of the cut locus in dimension less than or equal to six, Compositio Math., Tome 37 (1978) no. 1, pp. 103-119 | Numdam | MR 501100 | Zbl 0407.58008
[5] Semiconcave functions, Hamilton-Jacobi equations, and optimal control, Birkhäuser Boston, Boston, Progress in Nonlinear Differential Equations and Their Applications, Tome 58 (2004) | MR 2041617 | Zbl 1095.49003
[6] Geometric measure theory, Springer-Verlag New York Inc., New York, Progress in Nonlinear Differential Equations and Their Applications, Tome 153 (1969) | MR 257325 | Zbl 0874.49001
[7] Scattering of Geodesic Fields, I, Annals of Mathematics, Tome 108 (1978) no. 2, pp. 347-372 | Article | MR 506991 | Zbl 0399.58011
[8] Parallel translation of curvature along geodesics, Trans. Amer. Math. Soc., Tome 299 (1987), pp. 559-572 | Article | MR 869221 | Zbl 0615.53026
[9] The dimension of a cut locus on a smooth Riemannian manifold, Tohoku Math. J. (2), Tome 50 (1998) no. 4, pp. 571-575 | Article | MR 1653438 | Zbl 0939.53029
[10] The Lipschitz continuity of the distance function to the cut locus, Transactions of the A.M.S., Tome 353 (2000) no. 1, pp. 21-40 | Article | MR 1695025 | Zbl 0971.53031
[11] The distance function to the boundary, Finsler geometry, and the singular set of viscosity solutions of some Hamilton-Jacobi equations, Comm. Pure Appl. Math., Tome 58 (2005) no. 1, pp. 85-146 | Article | MR 2094267 | Zbl 1062.49021
[12] Generalized Solutions of Hamilton-Jacobi Equations, Pitman, Boston, MA Tome 69 (1982) | MR 667669 | Zbl 0497.35001
[13] Hamilton-Jacobi Equations and Distance Functions on Riemannian Manifolds, Appl. Math. Optim., Tome 47 (2003) no. 2, pp. 1-25 | MR 1941909 | Zbl 1048.49021
[14] Regularity And Variationality Of Solutions To Hamilton-Jacobi Equations. Part I: Regularity (2nd Edition), ESAIM Control Optim. Calc. Var., Tome 13 (2007) no. 2, pp. 413-417 | Article | Numdam | MR 2306644 | Zbl 1121.49028
[15] Morse theory, Princeton University Press, Princeton, N.J., Annals of Mathematics Studies, Tome 51 (1963) | MR 163331 | Zbl 0108.10401
[16] The conjugate locus of a Riemannian manifold, Amer. J. of Math., Tome 87 (1965), pp. 573-604 | Article | MR 208534 | Zbl 0129.36002