Chaque variété ouverte de dimension plus grande que 1 possède des métriques Riemanniennes complètes g avec géométrie bornée telles que n’est pas quasi-isométrique à une feuille d’un feuilletage de codimension un d’une variété fermée. Donc il n’y a pas de conditions sur la géométrie locale de qui suffisent pour qu’elle soit quasi-isométrique à une feuille de tel feuilletage. Nous introduisons la « propriété d’homologie bornée », une propriété semi-locale de qui est nécessaire pour qu’elle puisse être feuille d’un feuilletage de codimension 1 d’une variété compacte, à une quasi-isométrie près. Une étape essentielle de la démonstration utilise une généralisation partielle du théorème de la feuille fermée de Novikov aux dimensions plus grandes.
Every open manifold of dimension greater than one has complete Riemannian metrics with bounded geometry such that is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential step involves a partial generalization of the Novikov closed leaf theorem to higher dimensions.
@article{AIF_2011__61_4_1599_0, author = {Schweitzer, Paul A.}, title = {Riemannian manifolds not quasi-isometric to leaves in codimension one foliations}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {1599-1631}, doi = {10.5802/aif.2653}, zbl = {1241.57036}, mrnumber = {2951506}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_4_1599_0} }
Schweitzer, Paul A. Riemannian manifolds not quasi-isometric to leaves in codimension one foliations. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1599-1631. doi : 10.5802/aif.2653. http://gdmltest.u-ga.fr/item/AIF_2011__61_4_1599_0/
[1] The structure of generalized Reeb components (2009) (Preprint)
[2] A generalization of Novikov’s Theorem on the existence of Reeb components in codimension one foliations (2010) (In preparation)
[3] Manifolds which cannot be leaves of foliations, Topology, Tome 35 (1996), pp. 335-353 | Article | MR 1380502 | Zbl 0866.57022
[4] Geometric Theory of Foliations, Birkhäuser Verlag (1986) (Translation of Teoria Geométrica das Folheações, Projeto Euclides, IMPA, Rio de Janeiro, 1981) | MR 824240
[5] Every surface is a leaf, Topology, Tome 26 (1987), pp. 265-285 | Article | MR 899049 | Zbl 0621.57014
[6] Riemannian Geometry, Birkhäuser Verlag (1998) (Translation of Geometria Riemanniana, Projeto Euclides, IMPA, Rio de Janeiro, 1988) | MR 1138207
[7] Une variété qui n’est pas une feuille, Topology, Tome 24 (1985), pp. 67-73 | MR 790676 | Zbl 0527.57016
[8] Topologie des feuilles génériques, Annals of Math., Tome 141 (1995), pp. 387-422 | Article | MR 1324140 | Zbl 0843.57026
[9] Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, Tome 16 (1962), pp. 367-397 | Numdam | MR 189060 | Zbl 0122.40702
[10] Travaux de Novikov sur les feuilletages, Séminaire Bourbaki (1968) no. 339 | Numdam | Zbl 0208.51901
[11] Croissance des feuilletages presque sans holonomie, Foliations and Gelfand-Fuks Cohomology, Rio de Janeiro, 1976, Springer Lecture Notes in Mathematics, Tome 652 (1978), pp. 141-182 | MR 505659 | Zbl 0393.57005
[12] Introduction to the geometry of foliations, Vieweg, Braunschweig Tome B (1983) | MR 726931
[13] Open manifolds which are non-realizable as leaves, Kodai Math. J., Tome 8 (1985), pp. 112-119 | Article | MR 776712 | Zbl 0571.57022
[14] Characteristic invariants of noncompact Riemannian manifolds, Topology, Tome 23 (1984), pp. 299-302 | Article | MR 770565 | Zbl 0594.57011
[15] Topology of foliations, Trans. Moscow Math. Soc., Tome 14 (1965), pp. 268-304 | MR 200938 | Zbl 0247.57006
[16] Geometry of leaves, Topology, Tome 20 (1981), pp. 209-218 | Article | MR 605659 | Zbl 0454.57016
[17] Sur certaines propriétés topologiques des variétés feuilletées, Hermann, Paris, Actual. Sci. Ind. 1183 (1952) | MR 55692 | Zbl 0049.12602
[18] Surfaces not quasi-isometric to leaves of foliations of compact 3-manifolds, Analysis and geometry in foliated manifolds, Proceedings of the VII International Colloquium on Differential Geometry, Santiago de Compostela, 1994, World Scientific, Singapore (1995), pp. 223-238 | MR 1414206 | Zbl 0998.53020
[19] Deformation of homeomorphisms on stratified sets, Comment. Math. Helv., Tome 4 (1972), pp. 123-163 | Article | MR 319207 | Zbl 0252.57012
[20] Components of topological foliations (Russian), Mat. Sb. (N.S.), Tome 119 (1982), pp. 340-354 | MR 678831 | Zbl 0518.57014
[21] When is a manifold a leaf of some foliation?, Bull. Amer. Math. Soc., Tome 81 (1975), pp. 622-624 | Article | MR 365591 | Zbl 0309.57012
[22] Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones Math., Tome 36 (1976), pp. 225-255 | Article | MR 433464 | Zbl 0335.57015
[23] A virtual leaf, Int. J., Bifur. and Chaos, Tome 7 (1996), pp. 1845-1852 | MR 1728742 | Zbl 1089.37508
[24] An example of a 2-dimensional no leaf, Proceedings of the 1993 Tokyo Foliations Symposium, World Scientific, Singapore (1994), pp. 475-477 | MR 1363743
[25] Sturm-Liouville Theory, Amer. Math. Soc., Providence (2005)