Riemannian manifolds not quasi-isometric to leaves in codimension one foliations
[Variétés riemanniennes qui ne sont pas quasi-iométriques à feuille d’un feuilletage de codimension un]
Schweitzer, Paul A.
Annales de l'Institut Fourier, Tome 61 (2011), p. 1599-1631 / Harvested from Numdam

Chaque variété ouverte L de dimension plus grande que 1 possède des métriques Riemanniennes complètes g avec géométrie bornée telles que (L,g) n’est pas quasi-isométrique à une feuille d’un feuilletage de codimension un d’une variété fermée. Donc il n’y a pas de conditions sur la géométrie locale de (L,g) qui suffisent pour qu’elle soit quasi-isométrique à une feuille de tel feuilletage. Nous introduisons la «  propriété d’homologie bornée  », une propriété semi-locale de (L,g) qui est nécessaire pour qu’elle puisse être feuille d’un feuilletage de codimension 1 d’une variété compacte, à une quasi-isométrie près. Une étape essentielle de la démonstration utilise une généralisation partielle du théorème de la feuille fermée de Novikov aux dimensions plus grandes.

Every open manifold L of dimension greater than one has complete Riemannian metrics g with bounded geometry such that (L,g) is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of (L,g) suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of (L,g) that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential step involves a partial generalization of the Novikov closed leaf theorem to higher dimensions.

Publié le : 2011-01-01
DOI : https://doi.org/10.5802/aif.2653
Classification:  57R30,  53C12,  53B20,  53C40
Mots clés: feuilletages de codimension un, composante de Reeb, non-feuille, géométrie des feuilles, propriété d’homologie bornée
@article{AIF_2011__61_4_1599_0,
     author = {Schweitzer, Paul A.},
     title = {Riemannian manifolds not quasi-isometric to leaves in codimension one foliations},
     journal = {Annales de l'Institut Fourier},
     volume = {61},
     year = {2011},
     pages = {1599-1631},
     doi = {10.5802/aif.2653},
     zbl = {1241.57036},
     mrnumber = {2951506},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2011__61_4_1599_0}
}
Schweitzer, Paul A. Riemannian manifolds not quasi-isometric to leaves in codimension one foliations. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1599-1631. doi : 10.5802/aif.2653. http://gdmltest.u-ga.fr/item/AIF_2011__61_4_1599_0/

[1] Alcalde, F.; Hector, G.; Schweitzer, P.A. The structure of generalized Reeb components (2009) (Preprint)

[2] Alcalde, F.; Hector, G.; Schweitzer, P.A. A generalization of Novikov’s Theorem on the existence of Reeb components in codimension one foliations (2010) (In preparation)

[3] Attie, O.; Hurder, S. Manifolds which cannot be leaves of foliations, Topology, Tome 35 (1996), pp. 335-353 | Article | MR 1380502 | Zbl 0866.57022

[4] Camacho, C.; Lins Neto, A. Geometric Theory of Foliations, Birkhäuser Verlag (1986) (Translation of Teoria Geométrica das Folheações, Projeto Euclides, IMPA, Rio de Janeiro, 1981) | MR 824240

[5] Cantwell, J.; Conlon, L. Every surface is a leaf, Topology, Tome 26 (1987), pp. 265-285 | Article | MR 899049 | Zbl 0621.57014

[6] Do Carmo, M. Riemannian Geometry, Birkhäuser Verlag (1998) (Translation of Geometria Riemanniana, Projeto Euclides, IMPA, Rio de Janeiro, 1988) | MR 1138207

[7] Ghys, E. Une variété qui n’est pas une feuille, Topology, Tome 24 (1985), pp. 67-73 | MR 790676 | Zbl 0527.57016

[8] Ghys, E. Topologie des feuilles génériques, Annals of Math., Tome 141 (1995), pp. 387-422 | Article | MR 1324140 | Zbl 0843.57026

[9] Haefliger, A. Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, Tome 16 (1962), pp. 367-397 | Numdam | MR 189060 | Zbl 0122.40702

[10] Haefliger, A. Travaux de Novikov sur les feuilletages, Séminaire Bourbaki (1968) no. 339 | Numdam | Zbl 0208.51901

[11] Hector, G. Croissance des feuilletages presque sans holonomie, Foliations and Gelfand-Fuks Cohomology, Rio de Janeiro, 1976, Springer Lecture Notes in Mathematics, Tome 652 (1978), pp. 141-182 | MR 505659 | Zbl 0393.57005

[12] Hector, G.; Hirsch, U. Introduction to the geometry of foliations, Vieweg, Braunschweig Tome B (1983) | MR 726931

[13] Inaba, T.; Nishimori, T.; Takamura, M.; Tsuchiya, N. Open manifolds which are non-realizable as leaves, Kodai Math. J., Tome 8 (1985), pp. 112-119 | Article | MR 776712 | Zbl 0571.57022

[14] Januszkiewicz, T. Characteristic invariants of noncompact Riemannian manifolds, Topology, Tome 23 (1984), pp. 299-302 | Article | MR 770565 | Zbl 0594.57011

[15] Novikov, S.P. Topology of foliations, Trans. Moscow Math. Soc., Tome 14 (1965), pp. 268-304 | MR 200938 | Zbl 0247.57006

[16] Phillips, A.; Sullivan, D. Geometry of leaves, Topology, Tome 20 (1981), pp. 209-218 | Article | MR 605659 | Zbl 0454.57016

[17] Reeb, G. Sur certaines propriétés topologiques des variétés feuilletées, Hermann, Paris, Actual. Sci. Ind. 1183 (1952) | MR 55692 | Zbl 0049.12602

[18] Schweitzer, P.A. Surfaces not quasi-isometric to leaves of foliations of compact 3-manifolds, Analysis and geometry in foliated manifolds, Proceedings of the VII International Colloquium on Differential Geometry, Santiago de Compostela, 1994, World Scientific, Singapore (1995), pp. 223-238 | MR 1414206 | Zbl 0998.53020

[19] Siebenmann, L.C. Deformation of homeomorphisms on stratified sets, Comment. Math. Helv., Tome 4 (1972), pp. 123-163 | Article | MR 319207 | Zbl 0252.57012

[20] Solodov, V.V. Components of topological foliations (Russian), Mat. Sb. (N.S.), Tome 119 (1982), pp. 340-354 | MR 678831 | Zbl 0518.57014

[21] Sondow, J. When is a manifold a leaf of some foliation?, Bull. Amer. Math. Soc., Tome 81 (1975), pp. 622-624 | Article | MR 365591 | Zbl 0309.57012

[22] Sullivan, D. Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones Math., Tome 36 (1976), pp. 225-255 | Article | MR 433464 | Zbl 0335.57015

[23] Walczak, P A virtual leaf, Int. J., Bifur. and Chaos, Tome 7 (1996), pp. 1845-1852 | MR 1728742 | Zbl 1089.37508

[24] Zeghib, A. An example of a 2-dimensional no leaf, Proceedings of the 1993 Tokyo Foliations Symposium, World Scientific, Singapore (1994), pp. 475-477 | MR 1363743

[25] Zetti, A. Sturm-Liouville Theory, Amer. Math. Soc., Providence (2005)