Soit une surface immergée dans avec une courbure moyenne constante. Nous considérons l’opérateur de Weingarten à trace nulle associé à la seconde forme fondamentale de la surface et nous introduisons un tenseur , liés à la forme quadratique de Abresch-Rosenberg. Nous établissons les équations de type Simons pour et . En utilisant ces équations, nous caractérisons les immersions pour lesquelles ou sont bornés.
Let be an immersed surface in with constant mean curvature. We consider the traceless Weingarten operator associated to the second fundamental form of the surface, and we introduce a tensor , related to the Abresch-Rosenberg quadratic differential form. We establish equations of Simons type for both and . By using these equations, we characterize some immersions for which or is appropriately bounded.
@article{AIF_2011__61_4_1299_0, author = {Batista da Silva, M\'arcio Henrique}, title = {Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {1299-1322}, doi = {10.5802/aif.2641}, zbl = {1242.53066}, mrnumber = {2951494}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_4_1299_0} }
Batista da Silva, Márcio Henrique. Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1299-1322. doi : 10.5802/aif.2641. http://gdmltest.u-ga.fr/item/AIF_2011__61_4_1299_0/
[1] A Hopf differential for constant mean curvature surfaces in and , Acta Math., Tome 193 (2004), pp. 141-174 | Article | MR 2134864 | Zbl 1078.53053
[2] Hypersurfaces with constant mean curvature in Spheres, Proc. of the AMS, Tome 120 (1994), pp. 1223-1229 | Article | MR 1172943 | Zbl 0802.53017
[3] Simons Equation Revisited, Anais Acad. Brasil. Ciências, Tome 66 (1994), pp. 397-403 | Zbl 0815.53007
[4] Eigenfunctions and Nodal Sets, Commentarii Math. Helv., Tome 51 (1976), pp. 43-55 | Article | MR 397805 | Zbl 0334.35022
[5] Isometric immersions into 3-dimensional homogeneous manifolds, Commentarii Math. Helv., Tome 82 (2007) no. 1, pp. 87-131 | Article | MR 2296059 | Zbl 1123.53029
[6] On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces I, Invent. Math, Tome 98 (1989), pp. 39-58 | Article | MR 1010154 | Zbl 0682.53057
[7] Isoperimetric domains in the Riemannian product of a cicle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J., Tome 48 (1999), pp. 1357-1394 | Article | MR 1757077 | Zbl 0956.53049
[8] Minimal varieties in Riemannian manifolds, Indiana Univ. Math. J., Tome 88 (1968), pp. 62-105 | MR 233295 | Zbl 0181.49702
[9] Totally umbilic surfaces in homogeneous 3-manifolds (To appear in Comment. Math. Helv.) | Zbl 1170.53030
[10] Harmonic functions on complete Riemannian manifolds, Comm.Pure and Appl. Math., Tome 28 (1975), pp. 201-228 | Article | MR 431040 | Zbl 0291.31002