Cet article fait partie d’ une série consacrée à l’étude de la cohomologie des espaces classifiants. En généralisant l’algèbre de Weil d’une algèbre de Lie et le modèle BRST de Kalkman, nous introduisons l’algèbre de Weil associée à une algébroïde de Lie . Nous montrons ensuite que cette algèbre de Weil est liée au complexe de Bott-Shulman (calculant la cohomologie de l’espace classifiant) via une application de Van Est et nous prouvons un théorème d’isomorphisme de type Van Est. Une application de ces méthodes conduit à généraliser de façon plus conceptuelle des reconstitutions de formes multiplicatives et de 1-formes de connexion.
This paper belongs to a series of papers devoted to the study of the cohomology of classifying spaces. Generalizing the Weil algebra of a Lie algebra and Kalkman’s BRST model, here we introduce the Weil algebra associated to any Lie algebroid . We then show that this Weil algebra is related to the Bott-Shulman complex (computing the cohomology of the classifying space) via a Van Est map and we prove a Van Est isomorphism theorem. As application, we generalize and find a simpler more conceptual proof of the main result of [6] on the reconstructions of multiplicative forms and of a result of [21, 9] on the reconstruction of connection 1-forms. This reveals the relevance of the Weil algebra and Van Est maps to the integration and the pre-quantization of Poisson (and Dirac) manifolds.
@article{AIF_2011__61_3_927_0, author = {Arias Abad, Camilo and Crainic, Marius}, title = {The Weil algebra and the Van Est isomorphism}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {927-970}, doi = {10.5802/aif.2633}, zbl = {1237.58021}, mrnumber = {2918722}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_3_927_0} }
Arias Abad, Camilo; Crainic, Marius. The Weil algebra and the Van Est isomorphism. Annales de l'Institut Fourier, Tome 61 (2011) pp. 927-970. doi : 10.5802/aif.2633. http://gdmltest.u-ga.fr/item/AIF_2011__61_3_927_0/
[1] Representations up to homotopy and Bott’s spectral sequence for Lie groupoids (preprint arXiv:0911.2859, submitted for publication)
[2] Representations up to homotopy of Lie algebroids (preprint arXiv:0901.0319, submitted for publication)
[3] Heat kernels and Dirac operators, Springer-Verlag, Berlin, Grundlehren Text Editions (2004) (Corrected reprint of the 1992 original) | MR 2273508 | Zbl 1037.58015
[4] On the Chern-Weil homomorphism and the continuous cohomology of Lie-groups, Advances in Math., Tome 11 (1973), pp. 289-303 | Article | MR 345115 | Zbl 0276.55011
[5] On the de Rham theory of certain classifying spaces, Advances in Math., Tome 20 (1976) no. 1, pp. 43-56 | Article | MR 402769 | Zbl 0342.57016
[6] Integration of twisted Dirac brackets, Duke Math. J., Tome 123 (2004) no. 3, pp. 549-607 | Article | MR 2068969 | Zbl 1067.58016
[7] Notions d’algèbre différentielle; application aux groupes de Lie et aux variétés où opère un groupe de Lie, Colloque de Topologie (espaces fibrés), Bruxelles, 1950, Georges Thone, Liège (1951), pp. 15-27 | Zbl 0045.30601
[8] Differentiable and algebroid cohomology, van Est isomorphisms, and characteristic classes, Comment. Math. Helv., Tome 78 (2003) no. 4, pp. 681-721 | Article | MR 2016690 | Zbl 1041.58007
[9] Prequantization and Lie brackets, J. Symplectic Geom., Tome 2 (2004) no. 4, pp. 579-602 http://projecteuclid.org/getRecord?id=euclid.jsg/1144070630 | MR 2197220 | Zbl 1095.53060
[10] Integrability of Lie brackets, Ann. of Math. (2), Tome 157 (2003) no. 2, pp. 575-620 | Article | MR 1973056 | Zbl 1037.22003
[11] Group cohomology and Lie algebra cohomology in Lie groups. I, II, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math., Tome 15 (1953), p. 484-492, 493–504 | MR 59285 | Zbl 0051.26001
[12] Supersymmetry and equivariant de Rham theory, Springer-Verlag, Berlin, Mathematics Past and Present (1999) (With an appendix containing two reprints by Henri Cartan [MR0042426 (13,107e); MR0042427 (13,107f)]) | MR 1689252 | Zbl 0934.55007
[13] Groupoïdes d’holonomie et classifiants, Astérisque (1984) no. 116, pp. 70-97 (Transversal structure of foliations (Toulouse, 1982)) | Zbl 0562.57012
[14] Foliated bundles and characteristic classes, Springer-Verlag, Berlin, Lecture Notes in Mathematics, Vol. 493 (1975) | MR 402773 | Zbl 0308.57011
[15] General theory of Lie groupoids and Lie algebroids, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 213 (2005) | MR 2157566 | Zbl 1078.58011
[16] Superconnections, Thom classes, and equivariant differential forms, Topology, Tome 25 (1986) no. 1, pp. 85-110 | Article | MR 836726 | Zbl 0592.55015
[17] Supergroupoids, double structures and equivariant cohomology, Berkeley (2006) (Ph. D. Thesis) | MR 2709144
[18] Introduction to foliations and Lie groupoids, Cambridge University Press, Cambridge, Cambridge Studies in Advanced Mathematics, Tome 91 (2003) | MR 2012261 | Zbl 1029.58012
[19] Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. (1968) no. 34, pp. 105-112 | Article | Numdam | MR 232393 | Zbl 0199.26404
[20] Symplectic groupoids and Poisson manifolds, Bull. Amer. Math. Soc. (N.S.), Tome 16 (1987) no. 1, pp. 101-104 | Article | MR 866024 | Zbl 0618.58020
[21] Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., Tome 417 (1991), pp. 159-189 | MR 1103911 | Zbl 0722.58021