Pour une classe de variétés riemanniennes à bouts, nous donnons des développements semi-classiques de fonctions bornées du Laplacien. Nous étudions ensuite des propriétés de continuité de ces opérateurs et montrons en particulier que, bien qu’ils ne soient en général pas bornés sur , ils le sont toujours sur des espaces à poids convenables.
For a class of non compact Riemannian manifolds with ends, we give semi-classical expansions of bounded functions of the Laplacian. We then study related boundedness properties of these operators and show in particular that, although they are not bounded on in general, they are always bounded on suitable weighted spaces.
@article{AIF_2011__61_3_1181_0, author = {Bouclet, Jean-Marc}, title = {Semi-classical functional calculus on manifolds with ends and weighted $L^p$ estimates}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {1181-1223}, doi = {10.5802/aif.2638}, zbl = {1236.58033}, mrnumber = {2918727}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_3_1181_0} }
Bouclet, Jean-Marc. Semi-classical functional calculus on manifolds with ends and weighted $L^p$ estimates. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1181-1223. doi : 10.5802/aif.2638. http://gdmltest.u-ga.fr/item/AIF_2011__61_3_1181_0/
[1] Complex powers and non compact manifolds, Comm. PDE, Tome 29 (2004), pp. 671-705 | Article | MR 2059145 | Zbl 1071.58022
[2] Characterization of pseudo-differential operators and applications, Duke Math. J., Tome 44 (1977) no. 1, pp. 45-57 (and Correction, Duke Math. J. 46, no. 1, 215, (1979)) | Article | MR 435933 | Zbl 0353.35088
[3] Caractérisation des opérateurs pseudo-différentiels, Séminaire X-EDP, exp. XXIII (1996-1997) | Numdam | MR 1482829 | Zbl 1061.35531
[4] Strichartz estimates on asymptotically hyperbolic manifolds (Analysis and PDE (to appear)) | MR 2783305
[5] Littlewood-Paley decompositions on manifolds with ends, Bulletin de la SMF, Tome 138, fascicule 1 (2010), pp. 1-37 | Numdam | MR 2638890 | Zbl 1198.42013
[6] Strichartz estimates for long range perturbations, Amer. J. Math., Tome 129 (2007) no. 6, pp. 1565-1609 | Article | MR 2369889 | Zbl 1154.35077
[7] Strichartz inequalities and the non linear Schrödinger equation on compact manifolds, Amer. J. Math., Tome 126 (2004), pp. 569-605 | Article | MR 2058384 | Zbl 1067.58027
[8] Finite propagation speed, kernel estimates for functions of the Laplace operator and the geometry of complete Riemannian manifolds, J. Diff. Geom., Tome 17 (1982), pp. 15-53 | MR 658471 | Zbl 0493.53035
[9] -multipliers for noncompact symmetric spaces, Proc. Nat. Acad. Sci. U.S.A., Tome 71 (1974), p. 3911-3912 | Article | MR 367561 | Zbl 0296.43004
[10] Spectral theory and differential operators, Cambridge University Press (1995) | MR 1349825 | Zbl 0893.47004
[11] Spectral asymptotics in the semi-classical limit, Cambridge University Press, London Mathematical Society Lecture Note Series, Tome 268 (1999) | MR 1735654 | Zbl 0926.35002
[12] Functionnal calculus of pseudo-differential boundary problems, Birkhäuser, Boston Tome 65 (1986) | Zbl 0622.35001
[13] A Strichartz inequality for the Schrödinger equation on non-trapping asymptotically conic manifolds, Comm. PDE, Tome 30 (2004), pp. 157-205 | Article | MR 2131050 | Zbl 1068.35119
[14] Calcul fonctionnel par la transformation de Mellin et opérateurs admissibles, J. Funct. Analysis, Tome 53 (1983), pp. 246-268 | Article | MR 724029 | Zbl 0524.35103
[15] estimates for functions of elliptic operators on manifolds of bounded geometry, Russian J. Math. Phys., Tome 7 (2000) no. 2, pp. 216-229 | MR 1836640 | Zbl 1065.58021
[16] Geometric scattering theory, Cambridge Univ. Press, Stanford lecture (1995) | MR 1350074 | Zbl 0849.58071
[17] Autour de l’approximation semi-classique, Birkhaüser, Progress in mathematics, Tome 68 (1987) | MR 897108 | Zbl 0621.35001
[18] Pseudo-differential operators on manifolds with singularities, North-Holland, Amsterdam (1991) | MR 1142574 | Zbl 0747.58003
[19] Complex powers of an elliptic operator, Proc. Symp. in Pure Math., Tome 10 (1967), pp. 288-307 | MR 237943 | Zbl 0159.15504
[20] The resolvent of an elliptic boundary problem, Amer. J. Math., Tome 91 (1969), pp. 889-920 | Article | MR 265764 | Zbl 0191.11801
[21] Singular integrals and differentiability properties of functions, Princeton Univ. Press (1970) | MR 290095 | Zbl 0207.13501
[22] estimates on functions of the Laplace operator, Duke Math. J., Tome 58 (1989) no. 3, pp. 773-793 | Article | MR 1016445 | Zbl 0691.58043
[23] Partial Differential Equations II, Linear Equations, Springer, Appl. Math. Sci., Tome 116 (1996) | MR 1395149 | Zbl 0869.35003
[24] Partial Differential Equations III, Nonlinear Equations, Springer, Appl. Math. Sci., Tome 117 (1996) | MR 1477408 | Zbl 1206.35004