On donne une description des faces, des toutes codimensions, pour les cônes engendrés par l’ensemble des poids associés aux anneaux des semi-invariants des carquois. Pour un carquois de drapeaux triples et ses faces de codimension 1, la description est équivalente à un résultat de Knutson-Tao-Woodward sur les facettes du cône de Klyachko. On donne des nouvelles applications aux coefficients de Littlewood-Richardson, en particulier une formule pour les coefficients qui correspond à des triples de partitions sur un mur du cône de Klyachko. On commence par rappeler les méthodes utilisées (suites de Schur, les suites exceptionnelles, les catégories orthogonaux, les décompositions semi-stables, et les quotients GIT pour les carquois). Dans une appendice, on donne une variante d’une démonstration géométrique de Belkale d’une conjecture de Fulton qui est valable pour un carquois quelconque.
We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically review and develop the necessary methods (exceptional and Schur sequences, orthogonal categories, semi-stable decompositions, GIT quotients for quivers). In an Appendix we include a variant of Belkale’s geometric proof of a conjecture of Fulton that works for arbitrary quivers.
@article{AIF_2011__61_3_1061_0, author = {Derksen, Harm and Weyman, Jerzy}, title = {The combinatorics of quiver representations}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {1061-1131}, doi = {10.5802/aif.2636}, zbl = {1271.16016}, mrnumber = {2918725}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_3_1061_0} }
Derksen, Harm; Weyman, Jerzy. The combinatorics of quiver representations. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1061-1131. doi : 10.5802/aif.2636. http://gdmltest.u-ga.fr/item/AIF_2011__61_3_1061_0/
[1] Geometric proofs of Horn and saturation conjectures, J. Algebraic Geom., Tome 15 (2006) no. 1, pp. 133-176 | Article | MR 2177198 | Zbl 1090.14014
[2] Geometric proof of a conjecture of Fulton, Advances Math., Tome 216 (2007) no. 1, pp. 346-357 | Article | MR 2353260 | Zbl 1129.14063
[3] The saturation conjecture (after A. Knutson and T. Tao), With an appendix by William Fulton, Enseign. Math. (2), Tome 46 (2000) no. 1-2, pp. 43-60 | MR 1769536 | Zbl 0979.20041
[4] Quivers, long exact sequences and Horn type inequalities, J. Algebra, Tome 320 (2008) no. 1, pp. 128-157 | Article | MR 2417982 | Zbl 1207.16011
[5] Quivers, long exact sequences and Horn type inequalities II, Glasg. Math. J., Tome 51 (2009) no. 2, pp. 201-217 | Article | MR 2500745 | Zbl 1210.16016
[6] Non-log-concave Littlewood-Richardson coefficients, Compos. Math., Tome 43 (2007) no. 6, pp. 1545-1557 | MR 2371381 | Zbl 1184.05136
[7] Exceptional sequences of representations of quivers, Canadian Math. Soc. Conf. Proceedings, Tome 14 (1993), pp. 117-124 | MR 1265279 | Zbl 0828.16012
[8] Subrepresentations of general representations of quivers, Bull. London Math. Soc., Tome 28 (1996) no. 4, pp. 363-366 | Article | MR 1384823 | Zbl 0863.16008
[9] On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J., Tome 118 (2003) no. 2, pp. 339-352 | Article | MR 1980997 | Zbl 1046.15013
[10] On the number of subrepresentations of a general quiver representation, J. London Math. Soc. (2), Tome 76 (2007) no. 1, pp. 135-147 | Article | MR 2351613 | Zbl 1146.16007
[11] Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, Journal of the AMS, Tome 13 (2000), pp. 467-579 | MR 1758750 | Zbl 0993.16011
[12] On the canonical decomposition of quiver representations, Compositio Math., Tome 133 (2002), pp. 245-265 | Article | MR 1930979 | Zbl 1016.16007
[13] On the Littlewood-Richardson polynomials, J. Algebra, Tome 255 (2002) no. 2, pp. 247-257 | Article | MR 1935497 | Zbl 1018.16012
[14] The combinatorics of quiver representations (arXiv:math/0608288) | MR 2110070
[15] Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc., Tome 37 (2000) no. 3, pp. 209-249 | Article | MR 1754641 | Zbl 0994.15021
[16] Quivers, cones and polytopes, Linear Algebra Appl., Tome 365 (2003), pp. 215-237 (special issue on linear algebra methods in representation theory) | Article | MR 1987339 | Zbl 1034.52011
[17] Stable representations of quivers, J. Pure Appl. Algebra, Tome 172 (2002) no. 2-3, pp. 205-224 | Article | MR 1906875 | Zbl 1040.16011
[18] Eigenvalues of sums of Hermitian matrices, Pacific J. Math., Tome 12 (1962), pp. 620-630 | MR 140521 | Zbl 0112.01501
[19] Infinite root systems, representations of graphs and Invariant Theory, Invent. Math., Tome 56 (1980), pp. 57-92 | Article | MR 557581 | Zbl 0427.17001
[20] Infinite Root Systems, Representations of Graphs and Invariant Theory II, J. Algebra, Tome 78 (1982), pp. 141-162 | Article | MR 677715 | Zbl 0497.17007
[21] Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford (2), Tome 45 (1994), pp. 515-530 | Article | MR 1315461 | Zbl 0837.16005
[22] The hive model and the factorisation of Kostka coefficients, Sém. Lothar. Combin., Tome 54A (2005/07), pp. Art. B54Ah, 22 pp. (electronic) | MR 2264935 | Zbl 1178.05101
[23] Factorisation of Littlewood-Richardson coefficients, J. Combin. Theory Ser. A, Tome 116 (2009) no. 2, pp. 314-333 | Article | MR 2475020 | Zbl 1207.05214
[24] The multiplication of Schur-functions and extensions of -modules, J. London Math. Soc., Tome 43 (1968), pp. 280-284 | Article | MR 228481 | Zbl 0188.09504
[25] Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.), Tome 4 (1988) no. 3, pp. 419-445 | MR 1654578 | Zbl 0915.14010
[26] The honeycomb model of tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc., Tome 12 (1999) no. 4, pp. 1055-1090 | Article | MR 1671451 | Zbl 0944.05097
[27] The honeycomb model of tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc., Tome 17 (2004) no. 1, pp. 19-48 | Article | MR 2015329 | Zbl 1043.05111
[28] Semisimple representations of quivers, Trans. Amer. Math. Soc., Tome 317 (1990) no. 2, pp. 585-598 | Article | MR 958897 | Zbl 0693.16018
[29] Geometric invariant theory and generalized eigenvalue problem II (arXiv:0903.1187) | Zbl 1197.14051
[30] GIT cones for quivers (arXiv: 0903.1202)
[31] Geometric invariant theory and the generalized eigenvalue problem, Invent. Math., Tome 180 (2010) no. 2, pp. 389-441 | Article | MR 2609246 | Zbl 1197.14051
[32] Representations of -species and bimodules, J. Algebra, Tome 41 (1976), pp. 269-302 | Article | MR 422350 | Zbl 0338.16011
[33] Tame algebras and integral quadratic forms, Springer, Lecture Notes in Math., Tome 1099 (1984) | MR 774589 | Zbl 0448.16019
[34] The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Abelian group theory and related topics (Oberwolfach, 1993), Amer. Math. Soc., Providence, RI (Contemp. Math.) Tome 171 (1994), pp. 339-352 | MR 1293154 | Zbl 0851.16010
[35] Stability for an abelian category, J. Algebra, Tome 197 (1997), pp. 231-245 | Article | MR 1480783 | Zbl 0893.18007
[36] Semi-invariants of Quivers, J. London Math. Soc., Tome 43 (1991), pp. 383-395 | Article | MR 1113382 | Zbl 0779.16005
[37] General Representations of Quivers, Proc. London Math. Soc. (3), Tome 65 (1992), pp. 46-64 | Article | MR 1162487 | Zbl 0795.16008
[38] Birational classification of moduli spaces of representations of quivers, Indag. Math., N.S., Tome 12 (3) (2001), pp. 407-432 | Article | MR 1914089 | Zbl 1013.16005
[39] Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math., N.S., Tome 12 (1) (2001), pp. 125-138 | Article | MR 1908144 | Zbl 1004.16012
[40] Schubert Induction, Annals of Math. (2), Tome 164 (2006) no. 2, pp. 489-512 | Article | MR 2247966 | Zbl 1115.14043
[41] Das asymtotische Verteilungsgesetz der Eigenwerte lineare partieller Differentialgleichungen, Math. Ann., Tome 71 (1912), pp. 441-479 | Article | MR 1511670