Quand une surface abélienne complexe admet une décomposition en produit de deux courbes elliptiques, combien y a-t-il de telles décompositions possibles ? Nous donnons des formules arithmétiques pour le nombre de telles décompositions.
When a complex Abelian surface can be decomposed into a product of two elliptic curves, how many decompositions does the Abelian surface admit? We provide arithmetic formulae for the number of such decompositions.
@article{AIF_2011__61_2_717_0, author = {Ma, Shouhei}, title = {Decompositions of an Abelian surface and quadratic forms}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {717-743}, doi = {10.5802/aif.2627}, zbl = {1231.14036}, mrnumber = {2895071}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_2_717_0} }
Ma, Shouhei. Decompositions of an Abelian surface and quadratic forms. Annales de l'Institut Fourier, Tome 61 (2011) pp. 717-743. doi : 10.5802/aif.2627. http://gdmltest.u-ga.fr/item/AIF_2011__61_2_717_0/
[1] Compactification of arithmetic quotients of bounded symmetric domains, Ann. of Math. (2), Tome 84 (1966), pp. 442-528 | Article | MR 216035 | Zbl 0154.08602
[2] Complex abelian varieties. Second edition, Springer, Grundlehren der Mathematischen Wissenschaften, Tome 302 (2004) | MR 2062673 | Zbl 1056.14063
[3] Rational quadratic forms. London Mathematical Society Monographs, Academic Press Tome 13 (1978) | MR 522835 | Zbl 0395.10029
[4] Primes of the form , Wiley-Interscience (1989) | MR 1028322 | Zbl 0956.11500
[5] A class number associated with a product of two elliptic curves, Natur. Sci. Rep. Ochanomizu Univ., Tome 16 (1965), pp. 9-19 | MR 202715 | Zbl 0151.27501
[6] Fourier-Mukai number of a K3 surface, Algebraic structures and moduli spaces, Amer. Math. Soc., Providence (CRM Proc. Lecture Notes) Tome 38 (2004), pp. 177-192 | MR 2096145 | Zbl 1076.14045
[7] Principal polarizations on products of elliptic curves, The geometry of Riemann surfaces and abelian varieties, Amer. Math. Soc., Providence (Contemp. Math.) Tome 397 (2006), pp. 153-162 | MR 2218006 | Zbl 1118.14050
[8] Weierstrass points of , Ann. of Math. (2), Tome 79 (1964), pp. 360-368 | Article | MR 161841 | Zbl 0124.29203
[9] Notes on small class numbers, Acta Arith., Tome 24 (1973/74), pp. 529-542 | MR 357373 | Zbl 0285.12004
[10] Integral symmetric bilinear forms and some of their geometric applications, Izv. Akad. Nauk SSSR Ser. Mat., Tome 43 (1979) no. 1, pp. 111-177 | MR 525944 | Zbl 0408.10011
[11] When is an abelian surface isomorphic or isogeneous to a product of elliptic curves?, Math. Z., Tome 203 (1990) no. 2, pp. 293-299 | Article | MR 1033438 | Zbl 0712.14028
[12] The period map of Abelian surfaces, J. Fac. Sci. Univ. Tokyo, Tome 25 (1978) no. 1, pp. 47-59 | MR 480530 | Zbl 0405.14021
[13] Singular abelian surfaces and binary quadratic forms, Classification of algebraic varieties and compact complex manifolds, Springer (Lecture Notes in Math.) Tome 412 (1974), pp. 259-287 | MR 382289 | Zbl 0302.14011
[14] On complex quadratic fields with class-number two, Math. Comp., Tome 29 (1975), pp. 289-302 | MR 369313 | Zbl 0321.12009
[15] The geometry of the classical groups, Heldermann Verlag, Sigma Series in Pure Mathematics, Tome 9 (1992) | MR 1189139 | Zbl 0767.20001
[16] Quadratic forms on finite groups, and related topics, Topology, Tome 2 (1963), pp. 281-298 | Article | MR 156890 | Zbl 0215.39903