Nous généralisons un théorème de Bellow et Calderón concernant la convergence p.p. de puissances de convolution où est une transformation préservant la mesure d’un espace de probabilités et est une mesure de probabilité sur les nombres entiers.
Bellow and Calderón proved that the sequence of convolution powers converges a.e, when is a strictly aperiodic probability measure on such that the expectation is zero, , and the second moment is finite, . In this paper we extend this result to cases where .
@article{AIF_2011__61_2_401_0, author = {Wedrychowicz, Christopher M.}, title = {Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {401-415}, doi = {10.5802/aif.2618}, zbl = {1242.47010}, mrnumber = {2895062}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_2_401_0} }
Wedrychowicz, Christopher M. Almost Everywhere Convergence Of Convolution Powers Without Finite Second Moment. Annales de l'Institut Fourier, Tome 61 (2011) pp. 401-415. doi : 10.5802/aif.2618. http://gdmltest.u-ga.fr/item/AIF_2011__61_2_401_0/
[1] A weak-type inequality for convolution products, Harmonic analysis and partial differential equations (Chicago, IL, 1996), Univ. Chicago Press, Chicago, IL (Chicago Lectures in Math.) (1999), pp. 41-48 | MR 1743854 | Zbl 0960.28011
[2] Almost everywhere convergence of weighted averages, Math. Ann., Tome 293 (1992) no. 3, pp. 399-426 | Article | MR 1170516 | Zbl 0736.28008
[3] Almost everywhere convergence of convolution powers, Ergodic Theory Dynam. Systems, Tome 14 (1994) no. 3, pp. 415-432 | Article | MR 1293401 | Zbl 0818.28005
[4] On iterates of convolutions, Proc. Amer. Math. Soc., Tome 47 (1975), pp. 368-370 | Article | MR 374816 | Zbl 0299.43004
[5] A remark on almost everywhere convergence of convolution powers, Illinnois J. Math., Tome 43 (1999) no. 3, pp. 465-479 | MR 1700602 | Zbl 0963.28014
[6] The strong sweeping out property for convolution powers, Ergodic Theory Dynam. Systems, Tome 21 (2001) no. 1, pp. 115-119 | Article | MR 1826663 | Zbl 0972.37002
[7] Absolutely convergent Fourier series and function classes, J. Math. Anal. Appl., Tome 324 (2006) no. 2, pp. 1168-1177 | Article | MR 2266550 | Zbl 1103.42003
[8] Sums of independent random variables, Springer-Verlag, New York (1975) (Translated from the Russian by A. A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82) | MR 388499 | Zbl 0322.60042
[9] On Indeterminate Forms, Proc. London Math. Soc., Tome s2-8(1) (1910), pp. 40-76 | Article
[10] Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York (1959) | MR 107776 | Zbl 0085.05601