On se propose de montrer que les variétés à bord et plus généralement à coins, normalement dilatées par un endomorphisme sont persistantes en tant que stratifications -régulières. Ce résultat sera démontré en classe , pour . On donne aussi un exemple simple d’une sous-variété à bord normalement dilatée mais qui n’est pas persistante en tant que sous-variété différentiable.
We show that invariant submanifolds with boundary, and more generally with corners which are normally expanded by an endomorphism are persistent as -regular stratifications. This result will be shown in class , for . We present also a simple example of a submanifold with boundary which is normally expanded but non-persistent as a differentiable submanifold.
@article{AIF_2011__61_1_79_0, author = {Berger, Pierre}, title = {Persistance des sous-vari\'et\'es \`a bord et \`a coins normalement dilat\'ees}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {79-104}, doi = {10.5802/aif.2598}, zbl = {1230.37037}, mrnumber = {2828127}, language = {fr}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_1_79_0} }
Berger, Pierre. Persistance des sous-variétés à bord et à coins normalement dilatées. Annales de l'Institut Fourier, Tome 61 (2011) pp. 79-104. doi : 10.5802/aif.2598. http://gdmltest.u-ga.fr/item/AIF_2011__61_1_79_0/
[1] C-régularité et trivialité topologique, Singularity theory and its applications, Part I (Coventry, 988/1989), Springer, Berlin (Lecture Notes in Math.) Tome 1462 (1991), pp. 42-62 | MR 1129023 | Zbl 0733.58003
[2] Persistence of stratifications of normally expanded laminations, C. R. Math. Acad. Sci. Paris, Tome 346 (2008) no. 13-14, pp. 767-772 | MR 2427079 | Zbl 1153.58001
[3] Persistence of laminations, Bull. Braz. Math. Soc. (N.S.), Tome 41 (2010) no. 2, pp. 259-319 | Article | Zbl 1225.37037
[4] Topologie de certains espaces de plongements, Bull. Soc. Math. France, Tome 89 (1961), pp. 227-380 | Numdam | MR 140120 | Zbl 0101.16001
[5] Variétés à bord anguleux et voisinages tubulaires, Séminaire Henri Cartan, 1961/62, Exp. 1, Secrétariat mathématique, Paris (1961/1962), pp. 11 | Numdam | MR 160221 | Zbl 0116.40304
[6] Differential topology, Springer-Verlag, New York (1976) (Graduate Texts in Mathematics, No. 33) | MR 448362 | Zbl 0356.57001
[7] Invariant manifolds, Springer-Verlag, Berlin (1977) (Lecture Notes in Mathematics, Vol. 583) | MR 501173 | Zbl 0355.58009
[8] Persistent manifolds are normally hyperbolic, Trans. Amer. Math. Soc., Tome 246 (1978), pp. 261-283 | MR 515539 | Zbl 0362.58014
[9] Stratifications and mappings, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 971), Academic Press, New York (1973), pp. 195-232 | MR 368064 | Zbl 0286.58003
[10] Endomorphisms of compact differentiable manifolds, Amer. J. Math., Tome 91 (1969), pp. 175-199 | Article | MR 240824 | Zbl 0201.56305
[11] Local topological properties of differentiable mappings, Differential Analysis, Bombay Colloq., Oxford Univ. Press, London (1964), pp. 191-202 | MR 195102 | Zbl 0151.32002
[12] Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J. (1965), pp. 205-244 | MR 188486 | Zbl 0129.39402