Persistance des sous-variétés à bord et à coins normalement dilatées
Berger, Pierre
Annales de l'Institut Fourier, Tome 61 (2011), p. 79-104 / Harvested from Numdam

On se propose de montrer que les variétés à bord et plus généralement à coins, normalement dilatées par un endomorphisme sont persistantes en tant que stratifications a-régulières. Ce résultat sera démontré en classe C s , pour s1. On donne aussi un exemple simple d’une sous-variété à bord normalement dilatée mais qui n’est pas persistante en tant que sous-variété différentiable.

We show that invariant submanifolds with boundary, and more generally with corners which are normally expanded by an endomorphism are persistent as a-regular stratifications. This result will be shown in class C s , for s1. We present also a simple example of a submanifold with boundary which is normally expanded but non-persistent as a differentiable submanifold.

Publié le : 2011-01-01
DOI : https://doi.org/10.5802/aif.2598
Classification:  37D10,  57R55
Mots clés: variété invariante, variété à bord, variété à coins, persitance, hyperbolicité normales, stratification
@article{AIF_2011__61_1_79_0,
     author = {Berger, Pierre},
     title = {Persistance des sous-vari\'et\'es \`a bord et \`a coins normalement dilat\'ees},
     journal = {Annales de l'Institut Fourier},
     volume = {61},
     year = {2011},
     pages = {79-104},
     doi = {10.5802/aif.2598},
     zbl = {1230.37037},
     mrnumber = {2828127},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/AIF_2011__61_1_79_0}
}
Berger, Pierre. Persistance des sous-variétés à bord et à coins normalement dilatées. Annales de l'Institut Fourier, Tome 61 (2011) pp. 79-104. doi : 10.5802/aif.2598. http://gdmltest.u-ga.fr/item/AIF_2011__61_1_79_0/

[1] Bekka, K. C-régularité et trivialité topologique, Singularity theory and its applications, Part I (Coventry, 988/1989), Springer, Berlin (Lecture Notes in Math.) Tome 1462 (1991), pp. 42-62 | MR 1129023 | Zbl 0733.58003

[2] Berger, Pierre Persistence of stratifications of normally expanded laminations, C. R. Math. Acad. Sci. Paris, Tome 346 (2008) no. 13-14, pp. 767-772 | MR 2427079 | Zbl 1153.58001

[3] Berger, Pierre Persistence of laminations, Bull. Braz. Math. Soc. (N.S.), Tome 41 (2010) no. 2, pp. 259-319 | Article | Zbl 1225.37037

[4] Cerf, J. Topologie de certains espaces de plongements, Bull. Soc. Math. France, Tome 89 (1961), pp. 227-380 | Numdam | MR 140120 | Zbl 0101.16001

[5] Douady, A. Variétés à bord anguleux et voisinages tubulaires, Séminaire Henri Cartan, 1961/62, Exp. 1, Secrétariat mathématique, Paris (1961/1962), pp. 11 | Numdam | MR 160221 | Zbl 0116.40304

[6] Hirsch, M. W. Differential topology, Springer-Verlag, New York (1976) (Graduate Texts in Mathematics, No. 33) | MR 448362 | Zbl 0356.57001

[7] Hirsch, M. W.; Pugh, C. C.; Shub, M. Invariant manifolds, Springer-Verlag, Berlin (1977) (Lecture Notes in Mathematics, Vol. 583) | MR 501173 | Zbl 0355.58009

[8] Mañé, R. Persistent manifolds are normally hyperbolic, Trans. Amer. Math. Soc., Tome 246 (1978), pp. 261-283 | MR 515539 | Zbl 0362.58014

[9] Mather, J. N. Stratifications and mappings, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 971), Academic Press, New York (1973), pp. 195-232 | MR 368064 | Zbl 0286.58003

[10] Shub, M. Endomorphisms of compact differentiable manifolds, Amer. J. Math., Tome 91 (1969), pp. 175-199 | Article | MR 240824 | Zbl 0201.56305

[11] Thom, R. Local topological properties of differentiable mappings, Differential Analysis, Bombay Colloq., Oxford Univ. Press, London (1964), pp. 191-202 | MR 195102 | Zbl 0151.32002

[12] Whitney, H. Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N. J. (1965), pp. 205-244 | MR 188486 | Zbl 0129.39402