Nous étudions la nilpotence de certains groupes d’auto-équivalences d’homotopie. Notre objectif principal est d’étendre, aux groupes d’homotopy localisés et/ou aux groupes homotopie avec des coefficients, le principe général de Dror et A. Zabrodsky par lequel un groupe d’auto-équivalences d’homotopie d’un complexe fini, qui agit de façon nilpotente sur les groupes homotopie, est lui-même nilpotent
In this paper we study the nilpotency of certain groups of self homotopy equivalences. Our main goal is to extend, to localized homotopy groups and/or homotopy groups with coefficients, the general principle of Dror and Zabrodsky by which a group of self homotopy equivalences of a finite complex which acts nilpotently on the homotopy groups is itself nilpotent.
@article{AIF_2011__61_1_351_0, author = {Cuvilliez, Maxence and Murillo, Aniceto and Viruel, Antonio}, title = {Nilpotency of self homotopy equivalences with coefficients}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {351-364}, doi = {10.5802/aif.2604}, zbl = {1221.55008}, mrnumber = {2828133}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_1_351_0} }
Cuvilliez, Maxence; Murillo, Aniceto; Viruel, Antonio. Nilpotency of self homotopy equivalences with coefficients. Annales de l'Institut Fourier, Tome 61 (2011) pp. 351-364. doi : 10.5802/aif.2604. http://gdmltest.u-ga.fr/item/AIF_2011__61_1_351_0/
[1] Problems on Self-homotopy equivalences, Contemp. Math., Tome 274 (2001), pp. 309-315 | MR 1817020 | Zbl 0973.55005
[2] Subgroups of the group of self-homotopy equivalences, Contemp. Math., Tome 274 (2001), pp. 21-32 | MR 1817000 | Zbl 0982.55002
[3] Obstruction Theory, Springer, Lectures Notes in Math., Tome 628 (1977) | MR 467748
[4] Self-homotopy equivalences of virtually nilpotent spaces, Comm. Math. Helv., Tome 56 (1981), pp. 599-614 | Article | MR 656214 | Zbl 0504.55004
[5] Unipotency and nilpotency in homotopy equivalences, Topology, Tome 18 (1979), pp. 187-197 | Article | MR 546789 | Zbl 0417.55008
[6] Nilpotency and localization of groups of fiber homotopy equivalences, Contemporary Math., Tome 274 (2001), pp. 145-157 | MR 1817007 | Zbl 0978.55006
[7] Operations with local coefficients, Amer. Journal of Math., Tome 82 (1963) no. 2, pp. 156-188 | Article | MR 158398 | Zbl 0131.38006
[8] Finite groups, Harper and Row (1968) | MR 231903 | Zbl 0185.05701
[9] Localization of Nilpotent Groups and Spaces, North-Holland, Mathematics Studies, Tome 15 (1975) | MR 478146 | Zbl 0323.55016
[10] Combinatorial Group Theory, Interscience Publishers, Pure and Applied mathematics, Tome 13 (1966) | Zbl 0138.25604
[11] Localization of a certain group of self-homotopy equivalences, Pacific Journal of Math., Tome 136 (1989), pp. 293-301 | MR 978616 | Zbl 0673.55006
[12] Nilpotent groups of the group of self-homotopy equivalences, Israel Journal of Math., Tome 72 (1990), pp. 313-319 | Article | MR 1120224 | Zbl 0735.55003
[13] Spaces of sections of Eilenberg-Mac Lane fibrations, Pacific Jour. of Math., Tome 130 (1987) no. 1, pp. 171-186 | MR 910659 | Zbl 0599.55010
[14] Self-homotopy equivalences of -local spaces, Koday Math. Jour., Tome 12 (1989), pp. 270-281 | Article | MR 1002667 | Zbl 0685.55005
[15] Homotopy self–equivalences 1988–1999, Contemporary Math., Tome 274 (2001), pp. 1-12 | MR 1816998 | Zbl 0973.55001
[16] Variation zum Konzept der Lusternik-Schnirelmann Kategorie, Math. Nachr., Tome 207 (1999), pp. 183-194 | MR 1724294 | Zbl 0933.55003
[17] -invariants in local coefficients theory, Proc. Amer. Math. Soc., Tome 29 (1971), pp. 169-174 | MR 307224 | Zbl 0214.49903
[18] Infinitesimal computations in topology, I.H.E.S. Publ. Math., Tome 47 (1977), pp. 269-331 | Numdam | MR 646078 | Zbl 0374.57002
[19] Elements of Homotopy Theory, Springer, Graduate Texts in Math., Tome 61 (1978) | MR 516508 | Zbl 0406.55001
[20] Applications of minimal simplicial groups, Topology, Tome 15 (1976), pp. 115-130 | Article | MR 402737 | Zbl 0345.55011