En 1996, Braaksma et Faber ont établi la multi-sommabilité, sur des multi-intervalles convenables, des solutions formelles d’équations aux différences nonlinéaires, localement analytiques, sous la condition que le niveau ne se présente pas. En combinant leurs résultats avec d’autres récents pour le cas des deux niveaux et , on démontre, pour une classe très générale d’équations, l’accéléro-sommabilité de la solution formelle. L’accéléro-somme est solution analytique de l’équation, admettant la solution formelle comme développement asymptotique à l’infini.
In 1996, Braaksma and Faber established the multi-summability, on suitable multi-intervals, of formal power series solutions of locally analytic, nonlinear difference equations, in the absence of “level ”. Combining their approach, which is based on the study of corresponding convolution equations, with recent results on the existence of flat (quasi-function) solutions in a particular type of domains, we prove that, under very general conditions, the formal solution is accelero-summable. Its sum is an analytic solution of the equation, represented asymptotically by the formal solution in a certain unbounded domain.
@article{AIF_2011__61_1_1_0, author = {Immink, Geertrui Klara}, title = {Accelero-summation of the formal solutions of nonlinear difference equations}, journal = {Annales de l'Institut Fourier}, volume = {61}, year = {2011}, pages = {1-51}, doi = {10.5802/aif.2596}, zbl = {1225.39005}, mrnumber = {2828125}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2011__61_1_1_0} }
Immink, Geertrui Klara. Accelero-summation of the formal solutions of nonlinear difference equations. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1-51. doi : 10.5802/aif.2596. http://gdmltest.u-ga.fr/item/AIF_2011__61_1_1_0/
[1] Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier, Tome 42 (1992), pp. 517-540 | Article | Numdam | MR 1182640 | Zbl 0759.34003
[2] Borel transforms and multisums, Revista del Seminario Iberoamericano de Matemáticas, Tome V (1997), pp. 27-44
[3] Multisummability for some classes of difference equations, Ann. Inst. Fourier, Tome 46 (1996) no. 1, pp. 183-217 | Article | Numdam | MR 1385515 | Zbl 0837.39001
[4] Summation of formal solutions of a class of linear difference equations, Pacific J. Math., Tome 195 (2000) no. 1, pp. 35-65 | Article | MR 1781613 | Zbl 1008.39003
[5] The acceleration operators and their applications, Proc. Internat. Congr. Math., Kyoto (1990), Vol. 2, Springer-Verlag (1991), pp. 1249-1258 | MR 1159310 | Zbl 0741.30030
[6] Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Math., Hermann, Paris (1992) | MR 1399559
[7] Cohesive functions and weak accelerations, J. Anal. Math., Tome 60 (1993), pp. 71-97 | MR 1253230 | Zbl 0808.30002
[8] Asymptotics of analytic difference equations, Springer Verlag, Berlin Tome 1085 (1984) | MR 765699 | Zbl 0548.39001
[9] A particular type of summability of divergent power series, with an application to difference equations, Asymptotic Analysis, Tome 25 (2001), pp. 123 -148 | MR 1818642 | Zbl 0981.30002
[10] Summability of formal solutions of a class of nonlinear difference equations, Journal of Difference Equations and Applications, Tome 7 (2001), pp. 105 -126 | Article | MR 1809599 | Zbl 0973.39003
[11] Existence theorem for nonlinear difference equations, Asymtotic Analysis, Tome 44 (2005), pp. 173 -220 | MR 2176272 | Zbl 1083.39001
[12] Gevrey type solutions of nonlinear difference equations, Asymtotic Analysis, Tome 50 (2006), pp. 205 -237 | MR 2294599 | Zbl 1122.39018
[13] On the Gevrey order of formal solutions of nonlinear difference equations, Journal of Difference Equations and Applications, Tome 12 (2006), pp. 769-776 | Article | MR 2243835 | Zbl 1106.39001
[14] Exact asymptotics of nonlinear difference equations with levels 1 and , Ann. Fac. Sci. Toulouse, Tome 17 (2008), pp. 309-356 | Article | Numdam | MR 2487857 | Zbl 1160.39003
[15] Sommation des séries divergentes, Expo. Math., Tome 13 (1995), pp. 163-222 | MR 1346201 | Zbl 0836.40004
[16] Fonctions multisommables, Ann. Inst. Fourier, Tome 41-3 (1991), pp. 1 -16 | MR 1162566
[17] The formal classification of linear difference operators, Proceedings Kon. Nederl. Ac. van Wetensch., ser. A, 86 (2) (1983), pp. 249-261 | MR 705431 | Zbl 0519.39003
[18] Séries divergentes et théories asymptotiques, Panoramas et synthèses, Paris, Tome 121 (1993), pp. 651-684 | MR 1272100
[19] A new proof of multisummability of formal solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier, Tome 44 (1994) no. 3, pp. 811-848 | Article | Numdam | MR 1303885 | Zbl 0812.34005