Accelero-summation of the formal solutions of nonlinear difference equations
[Accéléro-sommation des solutions formelles d’équations aux différences nonlinéaires]
Immink, Geertrui Klara
Annales de l'Institut Fourier, Tome 61 (2011), p. 1-51 / Harvested from Numdam

En 1996, Braaksma et Faber ont établi la multi-sommabilité, sur des multi-intervalles convenables, des solutions formelles d’équations aux différences nonlinéaires, localement analytiques, sous la condition que le niveau 1 + ne se présente pas. En combinant leurs résultats avec d’autres récents pour le cas des deux niveaux 1 et 1 + , on démontre, pour une classe très générale d’équations, l’accéléro-sommabilité de la solution formelle. L’accéléro-somme est solution analytique de l’équation, admettant la solution formelle comme développement asymptotique à l’infini.

In 1996, Braaksma and Faber established the multi-summability, on suitable multi-intervals, of formal power series solutions of locally analytic, nonlinear difference equations, in the absence of “level 1 + ”. Combining their approach, which is based on the study of corresponding convolution equations, with recent results on the existence of flat (quasi-function) solutions in a particular type of domains, we prove that, under very general conditions, the formal solution is accelero-summable. Its sum is an analytic solution of the equation, represented asymptotically by the formal solution in a certain unbounded domain.

Publié le : 2011-01-01
DOI : https://doi.org/10.5802/aif.2596
Classification:  39A10,  30E15,  40G10
Mots clés: équation aux différences nonlinéaire, solution formelle, accéléro-sommation, quasi-fonction
@article{AIF_2011__61_1_1_0,
     author = {Immink, Geertrui Klara},
     title = {Accelero-summation of the formal solutions of nonlinear difference equations},
     journal = {Annales de l'Institut Fourier},
     volume = {61},
     year = {2011},
     pages = {1-51},
     doi = {10.5802/aif.2596},
     zbl = {1225.39005},
     mrnumber = {2828125},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2011__61_1_1_0}
}
Immink, Geertrui Klara. Accelero-summation of the formal solutions of nonlinear difference equations. Annales de l'Institut Fourier, Tome 61 (2011) pp. 1-51. doi : 10.5802/aif.2596. http://gdmltest.u-ga.fr/item/AIF_2011__61_1_1_0/

[1] Braaksma, B.L.J. Multisummability of formal power series solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier, Tome 42 (1992), pp. 517-540 | Article | Numdam | MR 1182640 | Zbl 0759.34003

[2] Braaksma, B.L.J. Borel transforms and multisums, Revista del Seminario Iberoamericano de Matemáticas, Tome V (1997), pp. 27-44

[3] Braaksma, B.L.J.; Faber, B.F. Multisummability for some classes of difference equations, Ann. Inst. Fourier, Tome 46 (1996) no. 1, pp. 183-217 | Article | Numdam | MR 1385515 | Zbl 0837.39001

[4] Braaksma, B.L.J.; Faber, B.F.; Immink, G.K. Summation of formal solutions of a class of linear difference equations, Pacific J. Math., Tome 195 (2000) no. 1, pp. 35-65 | Article | MR 1781613 | Zbl 1008.39003

[5] Ecalle, J. The acceleration operators and their applications, Proc. Internat. Congr. Math., Kyoto (1990), Vol. 2, Springer-Verlag (1991), pp. 1249-1258 | MR 1159310 | Zbl 0741.30030

[6] Ecalle, J. Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac, Actualités Math., Hermann, Paris (1992) | MR 1399559

[7] Ecalle, J. Cohesive functions and weak accelerations, J. Anal. Math., Tome 60 (1993), pp. 71-97 | MR 1253230 | Zbl 0808.30002

[8] Immink, G.K. Asymptotics of analytic difference equations, Springer Verlag, Berlin Tome 1085 (1984) | MR 765699 | Zbl 0548.39001

[9] Immink, G.K. A particular type of summability of divergent power series, with an application to difference equations, Asymptotic Analysis, Tome 25 (2001), pp. 123 -148 | MR 1818642 | Zbl 0981.30002

[10] Immink, G.K. Summability of formal solutions of a class of nonlinear difference equations, Journal of Difference Equations and Applications, Tome 7 (2001), pp. 105 -126 | Article | MR 1809599 | Zbl 0973.39003

[11] Immink, G.K. Existence theorem for nonlinear difference equations, Asymtotic Analysis, Tome 44 (2005), pp. 173 -220 | MR 2176272 | Zbl 1083.39001

[12] Immink, G.K. Gevrey type solutions of nonlinear difference equations, Asymtotic Analysis, Tome 50 (2006), pp. 205 -237 | MR 2294599 | Zbl 1122.39018

[13] Immink, G.K. On the Gevrey order of formal solutions of nonlinear difference equations, Journal of Difference Equations and Applications, Tome 12 (2006), pp. 769-776 | Article | MR 2243835 | Zbl 1106.39001

[14] Immink, G.K. Exact asymptotics of nonlinear difference equations with levels 1 and 1 + , Ann. Fac. Sci. Toulouse, Tome 17 (2008), pp. 309-356 | Article | Numdam | MR 2487857 | Zbl 1160.39003

[15] Malgrange, B. Sommation des séries divergentes, Expo. Math., Tome 13 (1995), pp. 163-222 | MR 1346201 | Zbl 0836.40004

[16] Malgrange, B.; Ramis, J.-P. Fonctions multisommables, Ann. Inst. Fourier, Tome 41-3 (1991), pp. 1 -16 | MR 1162566

[17] Praagman, C. The formal classification of linear difference operators, Proceedings Kon. Nederl. Ac. van Wetensch., ser. A, 86 (2) (1983), pp. 249-261 | MR 705431 | Zbl 0519.39003

[18] Ramis, J.P.; Paris, Soc. Math. France Séries divergentes et théories asymptotiques, Panoramas et synthèses, Paris, Tome 121 (1993), pp. 651-684 | MR 1272100

[19] Ramis, J.P.; Sibuya, Y. A new proof of multisummability of formal solutions of nonlinear meromorphic differential equations, Ann. Inst. Fourier, Tome 44 (1994) no. 3, pp. 811-848 | Article | Numdam | MR 1303885 | Zbl 0812.34005