Soit , une variété riemannienne compacte simplement connexe de dimension , à courbure isotrope positive ou nulle. Nous montrons que pour tout , il existe un qui satisfait la propriété suivante : si la courbure scalaire de satisfait
et que le tenseur d’Einstein satisfait
alors est difféomorphe à un espace symétrique de type compact.
Ceci est lié au résultat de S. Brendle sur la rigidité métrique des variétés d’Einstein à courbure isotrope positive ou nulle.
Let , , be a compact simply-connected Riemannian -manifold with nonnegative isotropic curvature. Given , we prove that there exists satisfying the following: If the scalar curvature of satisfies
and the Einstein tensor satisfies
then is diffeomorphic to a symmetric space of compact type.
This is related to the result of S. Brendle on the metric rigidity of Einstein manifolds with nonnegative isotropic curvature.
@article{AIF_2010__60_7_2493_0, author = {Seshadri, Harish}, title = {Almost-Einstein manifolds with nonnegative isotropic curvature}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {2493-2501}, doi = {10.5802/aif.2616}, zbl = {1225.53037}, mrnumber = {2866997}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_7_2493_0} }
Seshadri, Harish. Almost-Einstein manifolds with nonnegative isotropic curvature. Annales de l'Institut Fourier, Tome 60 (2010) pp. 2493-2501. doi : 10.5802/aif.2616. http://gdmltest.u-ga.fr/item/AIF_2010__60_7_2493_0/
[1] Einstein manifolds with nonnegative isotropic curvature are locally symmetric (to appear in Duke Mathematical Journal) | MR 2573825 | Zbl 1189.53042
[2] Manifolds with -pinched curvature are space forms, J. Amer. Math. Soc., Tome 22 (2009) no. 1, pp. 287-307 | Article | MR 2449060 | Zbl pre05859406
[3] Rigidity and stability of Einstein metrics—the case of compact symmetric spaces, Osaka J. Math., Tome 17 (1980) no. 1, pp. 51-73 | MR 558319 | Zbl 0426.53037
[4] Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes, Ann. of Math. (2), Tome 127 (1988) no. 1, pp. 199-227 | Article | MR 924677 | Zbl 0661.53027
[5] Metrics with nonnegative isotropic curvature, Duke Math. J., Tome 72 (1993) no. 3, pp. 649-672 | Article | MR 1253619 | Zbl 0804.53058
[6] Classification of almost quarter-pinched manifolds, Proc. Amer. Math. Soc., Tome 137 (2009) no. 7, pp. 2437-2440 | Article | MR 2495279 | Zbl 1168.53020
[7] Diffeomorphism finiteness, positive pinching, and second homotopy, Geom. Funct. Anal., Tome 9 (1999) no. 4, pp. 736-774 | Article | MR 1719602 | Zbl 0941.53026
[8] Manifolds with nonnegative isotropic curvature (To appear in Communications in Analysis and Geometry, http://www.math.iisc.ernet.in/~harish/papers/pic-cag.pdf) | MR 2601346
[9] Lectures on the Ricci flow, Cambridge University Press, Cambridge, London Mathematical Society Lecture Note Series, Tome 325 (2006) | MR 2265040 | Zbl 1105.58013