Nous considérons les solutions de l´équation de la courbure moyenne prescrite sur le disque unité ouvert de l’espace euclidien. Nous prouvons qu’une telle solution a une limite radiale presque partout qui, éventuellement, peut-être infinie. Nous donnons l´exemple d´une solution de l´équation des surfaces minimales en dimension deux, qui admet des limites radiales finies sur un ensemble de mesure nulle. Ce travail répond à une question de Nitsche.
We consider solutions of the prescribed mean curvature equation in the open unit disc of euclidean n-dimensional space. We prove that such a solution has radial limits almost everywhere; which may be infinite. We give an example of a solution to the minimal surface equation that has finite radial limits on a set of measure zero, in dimension two. This answers a question of Nitsche.
@article{AIF_2010__60_7_2357_0, author = {Collin, Pascal and Rosenberg, Harold}, title = {Asymptotic values of minimal graphs in~a~disc}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {2357-2372}, doi = {10.5802/aif.2610}, zbl = {1239.53004}, mrnumber = {2849267}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_7_2357_0} }
Collin, Pascal; Rosenberg, Harold. Asymptotic values of minimal graphs in a disc. Annales de l'Institut Fourier, Tome 60 (2010) pp. 2357-2372. doi : 10.5802/aif.2610. http://gdmltest.u-ga.fr/item/AIF_2010__60_7_2357_0/
[1] Construction of harmonic diffeomorphisms and minimal graphs (To appear in Annals of Math) | Zbl pre05850189
[2] Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Rational Mech. Anal., Tome 21 (1966), pp. 321-342 | Article | MR 190811 | Zbl 0171.08301
[3] Two theorems on boundary properties of minimal surfaces in nonparametric form, Math. Notes, Tome 21 (1977), pp. 307-310 | Article | MR 474055 | Zbl 0402.53003
[4] On new results in the theory of minimal surfaces, B. Amer. Math. Soc., Tome 71 (1965), pp. 195-270 | Article | MR 173993 | Zbl 0135.21701