Rigidity and L 2 cohomology of hyperbolic manifolds
[Rigidité et cohomologie L 2 des variétés hyperboliques]
Carron, Gilles
Annales de l'Institut Fourier, Tome 60 (2010), p. 2307-2331 / Harvested from Numdam

La petitesse de l’exposant critique du groupe fondamental d’une variété hyperbolique implique des résultats d’annulation pour certains espaces de cohomologie et de formes harmoniques L 2 . Nous obtenons ici des résultats de rigidité reliés à ces théorèmes d’annulations. Ceci est une généralisation de résultats déjà connus dans le cas convexe co-compact.

When X=Γ n is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of L 2 harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/aif.2608
Classification:  58J50,  22E40
Mots clés: formes harmoniques L 2 , variété hyperbolique, exposant critique
@article{AIF_2010__60_7_2307_0,
     author = {Carron, Gilles},
     title = {Rigidity and $L^2$ cohomology  of hyperbolic manifolds},
     journal = {Annales de l'Institut Fourier},
     volume = {60},
     year = {2010},
     pages = {2307-2331},
     doi = {10.5802/aif.2608},
     zbl = {1236.53040},
     mrnumber = {2848671},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2010__60_7_2307_0}
}
Carron, Gilles. Rigidity and $L^2$ cohomology  of hyperbolic manifolds. Annales de l'Institut Fourier, Tome 60 (2010) pp. 2307-2331. doi : 10.5802/aif.2608. http://gdmltest.u-ga.fr/item/AIF_2010__60_7_2307_0/

[1] Anderson, Michael T. L 2 harmonic forms on complete Riemannian manifolds, Geometry and analysis on manifolds (Katata/Kyoto, 1987), Springer, Berlin (Lecture Notes in Math.) Tome 1339 (1988), pp. 1-19 | Article | MR 961469 | Zbl 0652.53030

[2] Benedetti, Riccardo; Petronio, Carlo Lectures on hyperbolic geometry, Springer-Verlag, Berlin, Universitext (1992) | MR 1219310 | Zbl 0768.51018

[3] Besson, Gérard; Courtois, Gilles; Gallot, Sylvestre Lemme de Schwarz réel et applications géométriques, Acta Math., Tome 183 (1999) no. 2, pp. 145-169 | Article | MR 1738042 | Zbl 1035.53038

[4] Besson, Gérard; Courtois, Gilles; Gallot, Sylvestre Hyperbolic manifolds, amalgamated products and critical exponents, C. R. Math. Acad. Sci. Paris, Tome 336 (2003) no. 3, pp. 257-261 | Article | MR 1968269 | Zbl 1026.57013

[5] Besson, Gérard; Courtois, Gilles; Gallot, Sylvestre Rigidity of amalgamated products in negative curvature, J. Differential Geom., Tome 79 (2008) no. 3, pp. 335-387 http://projecteuclid.org/getRecord?id=euclid.jdg/1213798182 | MR 2433927 | Zbl 1206.53038

[6] Bishop, Christopher J.; Jones, Peter W. Hausdorff dimension and Kleinian groups, Acta Math., Tome 179 (1997) no. 1, pp. 1-39 | Article | MR 1484767 | Zbl 0921.30032

[7] Bourdon, Marc Sur le birapport au bord des CAT (-1)-espaces, Inst. Hautes Études Sci. Publ. Math. (1996) no. 83, pp. 95-104 | Article | Numdam | MR 1423021 | Zbl 0883.53047

[8] Bourguignon, Jean-Pierre The “magic” of Weitzenböck formulas, Variational methods (Paris, 1988), Birkhäuser Boston, Boston, MA (Progr. Nonlinear Differential Equations Appl.) Tome 4 (1990), pp. 251-271 | MR 1205158 | Zbl 0774.35003

[9] Bowen, Rufus Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 11-25 | Article | Numdam | MR 556580 | Zbl 0439.30032

[10] Branson, T. Kato constants in Riemannian geometry, Math. Res. Lett., Tome 7 (2000) no. 2-3, pp. 245-261 | MR 1764320 | Zbl 1039.53033

[11] Calderbank, David M. J.; Gauduchon, Paul; Herzlich, Marc Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal., Tome 173 (2000) no. 1, pp. 214-255 | Article | MR 1760284 | Zbl 0960.58010

[12] Carron, Gilles; Pedon, Emmanuel On the differential form spectrum of hyperbolic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Tome 3 (2004) no. 4, pp. 705-747 | Numdam | MR 2124586 | Zbl 1170.53309

[13] Izeki, Hiroyasu Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math., Tome 122 (1995) no. 3, pp. 603-625 | Article | MR 1359605 | Zbl 0854.53035

[14] Izeki, Hiroyasu; Nayatani, Shin Canonical metric on the domain of discontinuity of a Kleinian group, Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997–1998, Univ. Grenoble I, Saint (Sémin. Théor. Spectr. Géom.) Tome 16 (1997–1998), pp. 9-32 | Numdam | Zbl 0979.53036

[15] Kapovich, Michael Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal., Tome 18 (2009) no. 6, pp. 2017-2054 | Article | MR 2491697 | Zbl 1178.30056

[16] Li, Peter; Wang, Jiaping Complete manifolds with positive spectrum, J. Differential Geom., Tome 58 (2001) no. 3, pp. 501-534 http://projecteuclid.org/getRecord?id=euclid.jdg/1090348357 | MR 1906784 | Zbl 1032.58016

[17] Mazzeo, Rafe The Hodge cohomology of a conformally compact metric, J. Differential Geom., Tome 28 (1988) no. 2, pp. 309-339 http://projecteuclid.org/getRecord?id=euclid.jdg/1214442281 | MR 961517 | Zbl 0656.53042

[18] Mazzeo, Rafe; Phillips, Ralph S. Hodge theory on hyperbolic manifolds, Duke Math. J., Tome 60 (1990) no. 2, pp. 509-559 | Article | MR 1047764 | Zbl 0712.58006

[19] Patterson, S. J. The limit set of a Fuchsian group, Acta Math., Tome 136 (1976) no. 3-4, pp. 241-273 | Article | MR 450547 | Zbl 0336.30005

[20] Ratcliffe, John G. Foundations of hyperbolic manifolds, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 149 (1994) | MR 1299730 | Zbl 0809.51001

[21] Shalom, Yehuda Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2), Tome 152 (2000) no. 1, pp. 113-182 | Article | MR 1792293 | Zbl 0970.22011

[22] Sullivan, Dennis The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 171-202 | Article | Numdam | MR 556586 | Zbl 0439.30034

[23] Sullivan, Dennis Related aspects of positivity in Riemannian geometry, J. Differential Geom., Tome 25 (1987) no. 3, pp. 327-351 http://projecteuclid.org/getRecord?id=euclid.jdg/1214440979 | MR 882827 | Zbl 0615.53029

[24] Wang, Xiaodong On conformally compact Einstein manifolds, Math. Res. Lett., Tome 8 (2001) no. 5-6, pp. 671-688 | MR 1879811 | Zbl 1053.53030

[25] Wang, Xiaodong On the L 2 -cohomology of a convex cocompact hyperbolic manifold, Duke Math. J., Tome 115 (2002) no. 2, pp. 311-327 | Article | MR 1944573 | Zbl pre01941444

[26] Yeganefar, Nader Sur la L 2 -cohomologie des variétés à courbure négative, Duke Math. J., Tome 122 (2004) no. 1, pp. 145-180 | Article | MR 2046810 | Zbl 1069.58013

[27] Yue, Chengbo Dimension and rigidity of quasi-Fuchsian representations, Ann. of Math. (2), Tome 143 (1996) no. 2, pp. 331-355 | Article | MR 1381989 | Zbl 0843.22019