La petitesse de l’exposant critique du groupe fondamental d’une variété hyperbolique implique des résultats d’annulation pour certains espaces de cohomologie et de formes harmoniques . Nous obtenons ici des résultats de rigidité reliés à ces théorèmes d’annulations. Ceci est une généralisation de résultats déjà connus dans le cas convexe co-compact.
When is a real hyperbolic manifold, it is already known that if the critical exponent is small enough then some cohomology spaces and some spaces of harmonic forms vanish. In this paper, we show rigidity results in the borderline case of these vanishing results.
@article{AIF_2010__60_7_2307_0, author = {Carron, Gilles}, title = {Rigidity and $L^2$ cohomology of hyperbolic manifolds}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {2307-2331}, doi = {10.5802/aif.2608}, zbl = {1236.53040}, mrnumber = {2848671}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_7_2307_0} }
Carron, Gilles. Rigidity and $L^2$ cohomology of hyperbolic manifolds. Annales de l'Institut Fourier, Tome 60 (2010) pp. 2307-2331. doi : 10.5802/aif.2608. http://gdmltest.u-ga.fr/item/AIF_2010__60_7_2307_0/
[1] harmonic forms on complete Riemannian manifolds, Geometry and analysis on manifolds (Katata/Kyoto, 1987), Springer, Berlin (Lecture Notes in Math.) Tome 1339 (1988), pp. 1-19 | Article | MR 961469 | Zbl 0652.53030
[2] Lectures on hyperbolic geometry, Springer-Verlag, Berlin, Universitext (1992) | MR 1219310 | Zbl 0768.51018
[3] Lemme de Schwarz réel et applications géométriques, Acta Math., Tome 183 (1999) no. 2, pp. 145-169 | Article | MR 1738042 | Zbl 1035.53038
[4] Hyperbolic manifolds, amalgamated products and critical exponents, C. R. Math. Acad. Sci. Paris, Tome 336 (2003) no. 3, pp. 257-261 | Article | MR 1968269 | Zbl 1026.57013
[5] Rigidity of amalgamated products in negative curvature, J. Differential Geom., Tome 79 (2008) no. 3, pp. 335-387 http://projecteuclid.org/getRecord?id=euclid.jdg/1213798182 | MR 2433927 | Zbl 1206.53038
[6] Hausdorff dimension and Kleinian groups, Acta Math., Tome 179 (1997) no. 1, pp. 1-39 | Article | MR 1484767 | Zbl 0921.30032
[7] Sur le birapport au bord des -espaces, Inst. Hautes Études Sci. Publ. Math. (1996) no. 83, pp. 95-104 | Article | Numdam | MR 1423021 | Zbl 0883.53047
[8] The “magic” of Weitzenböck formulas, Variational methods (Paris, 1988), Birkhäuser Boston, Boston, MA (Progr. Nonlinear Differential Equations Appl.) Tome 4 (1990), pp. 251-271 | MR 1205158 | Zbl 0774.35003
[9] Hausdorff dimension of quasicircles, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 11-25 | Article | Numdam | MR 556580 | Zbl 0439.30032
[10] Kato constants in Riemannian geometry, Math. Res. Lett., Tome 7 (2000) no. 2-3, pp. 245-261 | MR 1764320 | Zbl 1039.53033
[11] Refined Kato inequalities and conformal weights in Riemannian geometry, J. Funct. Anal., Tome 173 (2000) no. 1, pp. 214-255 | Article | MR 1760284 | Zbl 0960.58010
[12] On the differential form spectrum of hyperbolic manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), Tome 3 (2004) no. 4, pp. 705-747 | Numdam | MR 2124586 | Zbl 1170.53309
[13] Limit sets of Kleinian groups and conformally flat Riemannian manifolds, Invent. Math., Tome 122 (1995) no. 3, pp. 603-625 | Article | MR 1359605 | Zbl 0854.53035
[14] Canonical metric on the domain of discontinuity of a Kleinian group, Séminaire de Théorie Spectrale et Géométrie, Vol. 16, Année 1997–1998, Univ. Grenoble I, Saint (Sémin. Théor. Spectr. Géom.) Tome 16 (1997–1998), pp. 9-32 | Numdam | Zbl 0979.53036
[15] Homological dimension and critical exponent of Kleinian groups, Geom. Funct. Anal., Tome 18 (2009) no. 6, pp. 2017-2054 | Article | MR 2491697 | Zbl 1178.30056
[16] Complete manifolds with positive spectrum, J. Differential Geom., Tome 58 (2001) no. 3, pp. 501-534 http://projecteuclid.org/getRecord?id=euclid.jdg/1090348357 | MR 1906784 | Zbl 1032.58016
[17] The Hodge cohomology of a conformally compact metric, J. Differential Geom., Tome 28 (1988) no. 2, pp. 309-339 http://projecteuclid.org/getRecord?id=euclid.jdg/1214442281 | MR 961517 | Zbl 0656.53042
[18] Hodge theory on hyperbolic manifolds, Duke Math. J., Tome 60 (1990) no. 2, pp. 509-559 | Article | MR 1047764 | Zbl 0712.58006
[19] The limit set of a Fuchsian group, Acta Math., Tome 136 (1976) no. 3-4, pp. 241-273 | Article | MR 450547 | Zbl 0336.30005
[20] Foundations of hyperbolic manifolds, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 149 (1994) | MR 1299730 | Zbl 0809.51001
[21] Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group, Ann. of Math. (2), Tome 152 (2000) no. 1, pp. 113-182 | Article | MR 1792293 | Zbl 0970.22011
[22] The density at infinity of a discrete group of hyperbolic motions, Inst. Hautes Études Sci. Publ. Math. (1979) no. 50, pp. 171-202 | Article | Numdam | MR 556586 | Zbl 0439.30034
[23] Related aspects of positivity in Riemannian geometry, J. Differential Geom., Tome 25 (1987) no. 3, pp. 327-351 http://projecteuclid.org/getRecord?id=euclid.jdg/1214440979 | MR 882827 | Zbl 0615.53029
[24] On conformally compact Einstein manifolds, Math. Res. Lett., Tome 8 (2001) no. 5-6, pp. 671-688 | MR 1879811 | Zbl 1053.53030
[25] On the -cohomology of a convex cocompact hyperbolic manifold, Duke Math. J., Tome 115 (2002) no. 2, pp. 311-327 | Article | MR 1944573 | Zbl pre01941444
[26] Sur la -cohomologie des variétés à courbure négative, Duke Math. J., Tome 122 (2004) no. 1, pp. 145-180 | Article | MR 2046810 | Zbl 1069.58013
[27] Dimension and rigidity of quasi-Fuchsian representations, Ann. of Math. (2), Tome 143 (1996) no. 2, pp. 331-355 | Article | MR 1381989 | Zbl 0843.22019