Spherical gradient manifolds
[Sur les variétés gradients sphériques]
Miebach, Christian ; Stötzel, Henrik
Annales de l'Institut Fourier, Tome 60 (2010), p. 2235-2260 / Harvested from Numdam

Nous étudions l’action d’un groupe réel-réductif G=Kexp(𝔭) sur une sous-variété réel-analytique X d’une variété kählérienne. Nous supposons que l’action de G peut être prolongée en une action holomorphe du groupe complexifié G sur cette variété kählérienne telle que l’action d’un sous-groupe maximal compact de G soit hamiltonienne. L’application moment induit une application gradient μ 𝔭 :X𝔭. Nous montrons que μ 𝔭 sépare presque les orbites de K si et seulement si un sous-groupe minimal parabolique de G possède une orbite ouverte dans X. Ce résultat généralise la caractérisation de Brion des variétés kählériennes sphériques qui admettent une application moment.

We study the action of a real-reductive group G=Kexp(𝔭) on a real-analytic submanifold X of a Kähler manifold. We suppose that the action of G extends holomorphically to an action of the complexified group G on this Kähler manifold such that the action of a maximal compact subgroup is Hamiltonian. The moment map induces a gradient map μ 𝔭 :X𝔭. We show that μ 𝔭 almost separates the K–orbits if and only if a minimal parabolic subgroup of G has an open orbit. This generalizes Brion’s characterization of spherical Kähler manifolds with moment maps.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/aif.2582
Classification:  32M05,  22E46,  53D20
Mots clés: groupe de Lie réel-réductif, action hamiltonienne, application gradient, variété sphérique
@article{AIF_2010__60_6_2235_0,
     author = {Miebach, Christian and St\"otzel, Henrik},
     title = {Spherical gradient manifolds},
     journal = {Annales de l'Institut Fourier},
     volume = {60},
     year = {2010},
     pages = {2235-2260},
     doi = {10.5802/aif.2582},
     zbl = {1214.32007},
     mrnumber = {2791656},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2010__60_6_2235_0}
}
Miebach, Christian; Stötzel, Henrik. Spherical gradient manifolds. Annales de l'Institut Fourier, Tome 60 (2010) pp. 2235-2260. doi : 10.5802/aif.2582. http://gdmltest.u-ga.fr/item/AIF_2010__60_6_2235_0/

[1] Akhiezer, D.; Heinzner, P. Spherical Stein spaces, Manuscripta Math., Tome 485 (1997) no. 3, p. 327-334. | MR 2076450 | Zbl 1056.32010

[2] Akhiezer, D.; Vinberg, E. B. Weakly symmetric spaces and spherical varieties, Transform. Groups, Tome 4 (1999) no. 1, p. 3-24. | Article | MR 1669186 | Zbl 0916.53024

[3] Bredon, G. E. Introduction to compact transformation groups, Academic Press, New-York – London, Pure and Applied Mathematics, Tome 46 (1972) | MR 413144 | Zbl 0246.57017

[4] Brion, M. Sur l’image de l’application moment, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin (Paris, 1986), Springer, Berlin (Lecture Notes in Math.) Tome 1296 (1987), pp. 177-192 | MR 932055 | Zbl 0667.58012

[5] Guillemin, V.; Sternberg, S. Symplectic techniques in physics, Cambridge University Press, Cambridge (1984) | MR 770935 | Zbl 0576.58012

[6] Heinzner, P. Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France, Tome 121 (1993) no. 3, p. 445-463. | Numdam | MR 1242639 | Zbl 0794.32022

[7] Heinzner, P.; Huckleberry, A. T. Kählerian potentials and convexity properties of the moment map, Invent. Math., Tome 126 (1996) no. 1, p. 65-84. | Article | MR 1408556 | Zbl 0855.58025

[8] Heinzner, P.; Schützdeller, P. Convexity properties of gradient maps (arXiv:0710.1152v1 [math.CV], 2007) | Zbl pre05784886

[9] Heinzner, P.; Schwarz, G. W. Cartan decomposition of the moment map, Math. Ann., Tome 337 (2007) no. 1, p. 197-232. | Article | MR 2262782 | Zbl 1110.32008

[10] Heinzner, P.; Stötzel, H. Semistable points with respect to real forms, Math. Ann., Tome 338 (2007) no. 1, p. 1-9. | Article | MR 2295501 | Zbl 1129.32015

[11] Hochschild, G. The structure of Lie groups, Holden-Day Inc, San Francisco (1965) | MR 207883 | Zbl 0131.02702

[12] Huckleberry, A. T.; Oeljeklaus, E. On holomorphically separable complex solv-manifolds, Ann. Inst. Fourier (Grenoble), Tome 36 (1986) no. 3, p. 57-65. | Article | Numdam | MR 865660 | Zbl 0571.32012

[13] Huckleberry, A. T.; Wurzbacher, T. Multiplicity-free complex manifolds, Math. Ann., Tome 286 (1990) no. 1-3, p. 261-280. | Article | MR 1032934 | Zbl 0765.32016

[14] Knapp, A. W. Lie groups beyond an introduction, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 140 (2002) | MR 1920389 | Zbl 1075.22501

[15] Kostant, B. On convexity, the Weyl group and the Iwasawa decomposition, Ann. Sci. École Norm. Sup. (4), Tome 6 (1973), p. 413-455. | Numdam | MR 364552 | Zbl 0293.22019

[16] Matsushima, Y.; Morimoto, A. Sur certains espaces fibrés holomorphes sur une variété de Stein, Bull. Soc. Math. France, Tome 88 (1960), p. 137-155. | Numdam | MR 123739 | Zbl 0094.28104

[17] Stötzel, H. Quotients of real reductive group actions related to orbit type strata, Ruhr-Universität Bochum, Dissertation (2008) | Zbl 1153.14301

[18] Wolf, J. A.. Harmonic analysis on commutative spaces, American Mathematical Society, Providence, RI, Mathematical Surveys and Monographs, Tome 142 (2007) | MR 2328043 | Zbl 1156.22010