On démontre que la multiplicité algébrique d’une singularité d’un champ de vecteurs holomorphe est invariante par -equivalences.
We prove that the algebraic multiplicity of a holomorphic vector field at an isolated singularity is invariant by equivalences.
@article{AIF_2010__60_6_2115_0, author = {Rosas, Rudy}, title = {The $C^1$ invariance of the algebraic multiplicity of a holomorphic vector field}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {2115-2135}, doi = {10.5802/aif.2578}, zbl = {1209.37057}, mrnumber = {2791652}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_6_2115_0} }
Rosas, Rudy. The $C^1$ invariance of the algebraic multiplicity of a holomorphic vector field. Annales de l'Institut Fourier, Tome 60 (2010) pp. 2115-2135. doi : 10.5802/aif.2578. http://gdmltest.u-ga.fr/item/AIF_2010__60_6_2115_0/
[1] Riemann surfaces, New York University (1958) (Notes by Richard Pollack and James Radlow)
[2] Kennzeichnung der schlauchknoten, Abh. Math. Sem. Ham. Univ., Tome 9 (1932), pp. 125-133 | Article | Zbl 0006.03402
[3] Invariant varieties through singularities of holomorphic vector fields, Ann. Math., Tome 115(3) (1982), pp. 579-595 | Article | MR 657239 | Zbl 0503.32007
[4] Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geometry, Tome 20 (1984), pp. 143-174 | MR 772129 | Zbl 0576.32020
[5] Foundations of modern analysis, enlarged and corrected printing, Academic Press, New York (1969) | MR 349288 | Zbl 0176.00502
[6] Lecture notes on algebraic topology, Springer, Berlin (1972)
[7] The index of a holomorphic flow with an isolated singularity, Math. Ann., Tome 291(4) (1991), pp. 737-751 | MR 1135541 | Zbl 0725.32012
[8] Formes intégrables holomorphes singuliéres, Astérisque 97, Société Mathématique, Paris (1982) | MR 704017 | Zbl 0545.32006
[9] Holonomie et intégrales premiéres, Ann. Sci. École Norm. Sup.(4), Tome 13(4) (1980), pp. 469-523 | Numdam | MR 608290 | Zbl 0458.32005
[10] Lecture notes on algebraic topology, University Press of Virginia, Charlottesville (1965)
[11] Boundary behaviour of conformal maps, Springer-Verlag, Grundlehren der Mathematischen Wissenschaften 299, A Series of Comprehensive Studies in Mathematics (1992) | MR 1217706 | Zbl 0762.30001
[12] On the topological invariance of the algebraic multiplicity of a holomorphic vector field, Rio de Janeiro, IMPA (2005) (Ph. D. Thesis)
[13] Real and complex analysis, Tata McGraw-Hill, New Delhi (1979) | Zbl 0925.00005
[14] Partial Differential Equations I, Springer, New York (1996) | MR 1395148 | Zbl 0869.35001
[15] On the topology of algebroid singularities, Amer. Journ. of Math., Tome 54 (1932), pp. 453-465 | Article | JFM 58.0614.02 | MR 1507926 | Zbl 0004.36902