Nous donnons une construction d’homomorphismes d’un groupe dans les nombres réels en utilisant une marche aléatoire sur le groupe. Cette construction est une alternative à une construction antécédente qui de plus s’applique dans des cas plus généraux. Les applications comprennent une estimation de la vitesse de fuite de marches aléatoires sur des groupes de croissance sous-exponentielle n’admettant pas d’homomorphismes non triviaux dans les nombres entiers et des inégalités entre la vitesse de fuite asymptotique et l’entropie asymptotique. Certaines des estimations d’entropie obtenues ont des applications indépendantes de la construction de l’homomorphisme, comme par exemple un théorème à la Liouville pour les fonctions harmoniques croissant lentement sur les groupes de croissance sous-exponentielle et certains groupes de croissance exponentielle.
We give a construction of homomorphisms from a group into the reals using random walks on the group. The construction is an alternative to an earlier construction that works in more general situations. Applications include an estimate on the drift of random walks on groups of subexponential growth admitting no nontrivial homomorphism to the integers and inequalities between the asymptotic drift and the asymptotic entropy. Some of the entropy estimates obtained have applications independent of the homomorphism construction, for example a Liouville-type theorem for slowly growing harmonic functions on groups of subexponential growth and on some groups of exponential growth.
@article{AIF_2010__60_6_2095_0, author = {Erschler, Anna and Karlsson, Anders}, title = {Homomorphisms to $\mathbb{R}$ constructed from random walks}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {2095-2113}, doi = {10.5802/aif.2577}, zbl = {1274.60015}, mrnumber = {2791651}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_6_2095_0} }
Erschler, Anna; Karlsson, Anders. Homomorphisms to $\mathbb{R}$ constructed from random walks. Annales de l'Institut Fourier, Tome 60 (2010) pp. 2095-2113. doi : 10.5802/aif.2577. http://gdmltest.u-ga.fr/item/AIF_2010__60_6_2095_0/
[1] Harmonic functions on groups, Differential geometry and relativity, Reidel, Dordrecht (1976), p. 27-32. Mathematical Phys. and Appl. Math., Vol. 3 | MR 507229 | Zbl 0345.31004
[2] Entropie des groupes de type fini, C. R. Acad. Sci. Paris Sér. A-B, Tome 275 (1972), p. A1363-A1366 | MR 324741 | Zbl 0252.94013
[3] Amenability via random walks, Duke Math. J., Tome 130 (2005) no. 1, pp. 39-56 | Article | MR 2176547 | Zbl 1104.43002
[4] Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer-Verlag, Berlin, Lecture Notes in Mathematics, vol. 470 (1975) | MR 442989 | Zbl 0308.28010
[5] A transmutation formula for Markov chains, Bull. Sci. Math. (2), Tome 109 (1985) no. 4, pp. 399-405 | MR 837740 | Zbl 0584.60078
[6] Quelques applications du théorème ergodique sous-additif, Conference on Random Walks (Kleebach, 1979) (French), Soc. Math. France, Paris (Astérisque) Tome 74 (1980) no. 4, pp. 183-201 | MR 588163 | Zbl 0446.60059
[7] Properties of random walks on discrete groups: time regularity and off-diagonal estimates, Bull. Sci. Math., Tome 132 (2008) no. 5, pp. 359-381 | Article | MR 2426641 | Zbl 1158.60001
[8] On drift and entropy growth for random walks on groups, Ann. Probab., Tome 31 (2003) no. 3, pp. 1193-1204 | Article | MR 1988468 | Zbl 1043.60005
[9] Boundary behavior for groups of subexponential growth, Ann. of Math. (2), Tome 160 (2004) no. 3, pp. 1183-1210 | Article | MR 2144977 | Zbl 1089.20025
[10] Critical constants for recurrence of random walks on -spaces, Ann. Inst. Fourier (Grenoble), Tome 55 (2005) no. 2, pp. 493-509 | Article | Numdam | MR 2147898 | Zbl 1133.20031
[11] Piecewise automatic groups, Duke Math. J., Tome 134 (2006) no. 3, pp. 591-613 | Article | MR 2254627 | Zbl 1159.20019
[12] Degrees of growth of finitely generated groups and the theory of invariant means, Math USSSR-Izv., Tome 25 (1985) no. 2, pp. 259-300 | Article | MR 764305 | Zbl 0583.20023
[13] Sur la loi des grands nombres et le rayon spectral d’une marche aléatoire, Conference on Random Walks (Kleebach, 1979) (French), Soc. Math. France, Paris (Astérisque) Tome 74 (1980) no. 3, pp. 47-98 | MR 588157 | Zbl 0448.60007
[14] Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Tome 21 (1993) no. 2, pp. 673-709 | Article | MR 1217561 | Zbl 0776.60086
[15] “Münchhausen trick” and amenability of self-similar groups, Internat. J. Algebra Comput., Tome 15 (2005) no. 5-6, pp. 907-937 | Article | MR 2197814 | Zbl 1168.20308
[16] Random walks on discrete groups: boundary and entropy, Ann. Probab., Tome 11 (1983) no. 3, pp. 457-490 | Article | MR 704539 | Zbl 0641.60009
[17] Linear drift and Poisson boundary for random walks, Pure Appl. Math. Q., Tome 3 (2007) no. 4, part 1, pp. 1027-1036 | MR 2402595 | Zbl 1142.60035
[18] Carne-Varopoulos bounds for centered random walks, Ann. Probab., Tome 34 (2006) no. 3, pp. 987-1011 | Article | MR 2243876 | Zbl 1099.60049
[19] A probabilistic approach to Carne’s bound, Potential Anal., Tome 29 (2008) no. 1, pp. 17-36 | Article | MR 2421492 | Zbl 1143.60045
[20]
(2005) (Research announcement at a Banff workshop)[21] Long range estimates for Markov chains, Bull. Sci. Math. (2), Tome 109 (1985) no. 3, pp. 225-252 | MR 822826 | Zbl 0583.60063