Spectral isolation of bi-invariant metrics on compact Lie groups
[Isolation spectrale des métriques bi-invariantes sur les groupes de Lie compacts]
Gordon, Carolyn S. ; Schueth, Dorothee ; Sutton, Craig J.
Annales de l'Institut Fourier, Tome 60 (2010), p. 1617-1628 / Harvested from Numdam

Soit G un groupe de Lie compact et connexe, et soit g 0 une métrique bi-invariante sur G. On démontre que g 0 est isolée spectralement dans la classe des métriques invariantes à gauche  : plus précisément, il existe un entier positif N tel que, dans un voisinage de g 0 dans la classe des métriques invariantes à gauche et de volume inférieur ou égal à celui de g 0 , la métrique g 0 est determinée de manière unique par les N premières valeurs propres strictement positives de son Laplacien (sans multiplicités). Si G est simple, on peut choisir N=2.

We show that a bi-invariant metric on a compact connected Lie group G is spectrally isolated within the class of left-invariant metrics. In fact, we prove that given a bi-invariant metric g 0 on G there is a positive integer N such that, within a neighborhood of g 0 in the class of left-invariant metrics of at most the same volume, g 0 is uniquely determined by the first N distinct non-zero eigenvalues of its Laplacian (ignoring multiplicities). In the case where G is simple, N can be chosen to be two.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/aif.2567
Classification:  53C20,  58J50
Mots clés: opérateur de Laplace, spectre des valeurs propres, groupe de Lie, métrique invariante à gauche, métrique bi-invariante
@article{AIF_2010__60_5_1617_0,
     author = {Gordon, Carolyn S. and Schueth, Dorothee and Sutton, Craig J.},
     title = {Spectral isolation of bi-invariant metrics on compact Lie groups},
     journal = {Annales de l'Institut Fourier},
     volume = {60},
     year = {2010},
     pages = {1617-1628},
     doi = {10.5802/aif.2567},
     zbl = {1203.53035},
     mrnumber = {2766225},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2010__60_5_1617_0}
}
Gordon, Carolyn S.; Schueth, Dorothee; Sutton, Craig J. Spectral isolation of bi-invariant metrics on compact Lie groups. Annales de l'Institut Fourier, Tome 60 (2010) pp. 1617-1628. doi : 10.5802/aif.2567. http://gdmltest.u-ga.fr/item/AIF_2010__60_5_1617_0/

[1] Conway, J. H.; Sloane, N. J. A. Four-dimensional lattices with the same theta series, Internat. Math. Res. Notices (1992) no. 4, pp. 93-96 | Article | MR 1159450 | Zbl 0770.11022

[2] Gordon, Carolyn S. Isospectral deformations of metrics on spheres, Invent. Math., Tome 145 (2001) no. 2, pp. 317-331 | Article | MR 1872549 | Zbl 0995.58004

[3] Gordon, Carolyn S.; Sutton, Craig J. Spectral isolation of naturally reductive metrics on simple Lie groups (Math. Z., to appear)

[4] Kuwabara, Ruishi On the characterization of flat metrics by the spectrum, Comment. Math. Helv., Tome 55 (1980) no. 3, pp. 427-444 | Article | MR 593057 | Zbl 0448.58027

[5] Leininger, C. J.; Mcreynolds, D. B.; Neumann, W. D.; Reid, A. W. Length and eigenvalue equivalence, Int. Math. Res. Not. IMRN (2007) no. 24, pp. 24 (Art. ID rnm135, 24 pp.) | MR 2377017 | Zbl 1158.53032

[6] Mckean, H. P. Selberg’s trace formula as applied to a compact Riemann surface, Comm. Pure Appl. Math., Tome 25 (1972), pp. 225-246 | Article | MR 473166

[7] Milnor, J. Eigenvalues of the Laplace operator on certain manifolds, Proc. Nat. Acad. Sci. U.S.A., Tome 51 (1964), pp. 542 | Article | MR 162204 | Zbl 0124.31202

[8] Patodi, V. K. Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc., Tome 34 (1970) no. 3-4, p. 269-285 (1971) | MR 488181 | Zbl 0237.53039

[9] Proctor, Emily Isospectral metrics and potentials on classical compact simple Lie groups, Michigan Math. J., Tome 53 (2005) no. 2, pp. 305-318 | Article | MR 2152702 | Zbl 1089.58022

[10] Schueth, Dorothee Isospectral manifolds with different local geometries, J. Reine Angew. Math., Tome 534 (2001), pp. 41-94 | Article | MR 1831631 | Zbl 0986.58016

[11] Schueth, Dorothee Isospectral metrics on five-dimensional spheres, J. Differential Geom., Tome 58 (2001) no. 1, pp. 87-111 | MR 1895349 | Zbl 1038.58042

[12] Szabo, Z. I. Locally non-isometric yet super isospectral spaces, Geom. Funct. Anal., Tome 9 (1999) no. 1, pp. 185-214 | Article | MR 1675894 | Zbl 0964.53026

[13] Tanno, Shǔkichi Eigenvalues of the Laplacian of Riemannian manifolds, Tǒhoku Math. J. (2), Tome 25 (1973), pp. 391-403 | Article | MR 334086 | Zbl 0266.53033

[14] Tanno, Shǔkichi A characterization of the canonical spheres by the spectrum, Math. Z., Tome 175 (1980) no. 3, pp. 267-274 | Article | MR 602639 | Zbl 0431.53037

[15] Urakawa, Hajime On the least positive eigenvalue of the Laplacian for compact group manifolds, J. Math. Soc. Japan, Tome 31 (1979) no. 1, pp. 209-226 | Article | MR 519046 | Zbl 0402.58012

[16] Wolpert, Scott The eigenvalue spectrum as moduli for flat tori, Trans. Amer. Math. Soc., Tome 244 (1978), pp. 313-321 | Article | MR 514879 | Zbl 0405.58051