En travaillant sur l’équation de Calabi-Yau généralisée proposée par Gromov pour des variétés presque-Kalhériennes fermées, nous étendons le résultat de la non-existence prouvé en dimension complexe 2, à des dimensions arbitraires.
Dealing with the generalized Calabi-Yau equation proposed by Gromov on closed almost-Kähler manifolds, we extend to arbitrary dimension a non-existence result proved in complex dimension .
@article{AIF_2010__60_5_1595_0, author = {Wang, Hongyu and Zhu, Peng}, title = {On a generalized Calabi-Yau equation}, journal = {Annales de l'Institut Fourier}, volume = {60}, year = {2010}, pages = {1595-1615}, doi = {10.5802/aif.2566}, zbl = {1228.53090}, mrnumber = {2766224}, language = {en}, url = {http://dml.mathdoc.fr/item/AIF_2010__60_5_1595_0} }
Wang, Hongyu; Zhu, Peng. On a generalized Calabi-Yau equation. Annales de l'Institut Fourier, Tome 60 (2010) pp. 1595-1615. doi : 10.5802/aif.2566. http://gdmltest.u-ga.fr/item/AIF_2010__60_5_1595_0/
[1] Symplectic and almost complex manifolds, in Holomorphic curves in symplectic geometry, Ed. by M. Audin and J. Lafontaine, Progress in Math., Tome 117 (1994), pp. 41-76 | MR 1274926
[2] The space of Kähler metrics, in Proceeding of the International Congress of Mathematicians Tome 2 (1954), p. 206-207
[3] Sur l’analogue presque-complexe de l’équation de Calabi-Yau, Osaka J. Math., Tome 33 (1996), pp. 829-846 | MR 1435456 | Zbl 0878.53030
[4] Two forms on four manifolds and elliptic equations, in Inspired by S. S. Chern, World Sci. Publ., Hackensack, NJ (2006), pp. 153-172 (in A memorial volume in honor of a great mathematician, Ed. by P. A. Griffiths) | MR 2313334 | Zbl 1140.58018
[5] Sur les structures presque hermitiennes isotropes, C. R. Acad. Sci. Paris, Tome 232 (1951), pp. 1281-1283 | MR 40790 | Zbl 0042.15904
[6] Hermitian connections and Dirac operators, Bull. Un. Mat. Ital., Tome B 11 (no. 2, suppl.) (1997), pp. 257-288 | MR 1456265 | Zbl 0876.53015
[7] Pseudoholomorphic curves in symplectic manifolds, Invent. Math., Tome 82 (1985), pp. 307-347 | Article | MR 809718 | Zbl 0592.53025
[8] Introduction to symplectic topology, Oxford University Press (1998) | MR 1698616 | Zbl 0844.58029
[9] On the volume elements of a manifold, Trans. AMS, Tome 120 (1965), pp. 286-294 | Article | MR 182927 | Zbl 0141.19407
[10] Taming symplectic forms and the Calabi-Yau equation, Proc. London Math. Soc., Tome 97 (2008), pp. 401-424 | Article | MR 2439667 | Zbl 1153.53054
[11] Calabi-Yau equation on closed symplectic 4-manifolds (in preparation)
[12] The Calabi-Yau equation on almost Kähler four manifolds, J. Diff. Geom., Tome 76 (2007), pp. 317-349 | MR 2330417 | Zbl 1123.32015
[13] The Classical groups, Princeton University Press, Princeton Mathematical Series, Tome 1 (1973) | MR 1488158 | Zbl 1024.20502
[14] On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I, Comm. Pure Appl. Math., Tome 31 (1978) no. 3, pp. 339-411 | Article | MR 480350 | Zbl 0369.53059
[15] On almost Hermitian manifolds, Yangzhou University (2008) (Ph. D. Thesis) | Zbl 1199.53050