On the number of compatibly Frobenius split subvarieties, prime F-ideals, and log canonical centers
[Sur le nombre de sous-variétés compatiblement scindées par Frobenius, le nombre de F-idéaux premiers, et le nombre de centres canoniques logarithmiques]
Schwede, Karl ; Tucker, Kevin
Annales de l'Institut Fourier, Tome 60 (2010), p. 1515-1531 / Harvested from Numdam

Soit X une variété projective Frobenius scindée avec un scindage de Frobenius θ. Dans cet article nous donnons une borne optimale et uniforme sur le nombre de sous-variétés de X qui sont compatibles avec le scindage de Frobenius θ. De même, nous donnons une borne sur le nombre de F-idéaux d’un anneau local F-fini F-pur. Enfin, nous donnons également une borne sur le nombre de centres canoniques logarithmiques d’un paire canonique logarithmique. Cette dernière variante étend un cas particulier d’un résultat de Helmke.

Let X be a projective Frobenius split variety with a fixed Frobenius splitting θ. In this paper we give a sharp uniform bound on the number of subvarieties of X which are compatibly Frobenius split with θ. Similarly, we give a bound on the number of prime F-ideals of an F-finite F-pure local ring. Finally, we also give a bound on the number of log canonical centers of a log canonical pair. This final variant extends a special case of a result of Helmke.

Publié le : 2010-01-01
DOI : https://doi.org/10.5802/aif.2563
Classification:  13A35,  14B05,  14J17
Mots clés: Frobenius scindé, compatiblement Frobenius scindé sous-variété, centres canoniques logarithmiques, F-idéaux
@article{AIF_2010__60_5_1515_0,
     author = {Schwede, Karl and Tucker, Kevin},
     title = {On the number of compatibly Frobenius split subvarieties, prime $F$-ideals, and log canonical centers},
     journal = {Annales de l'Institut Fourier},
     volume = {60},
     year = {2010},
     pages = {1515-1531},
     doi = {10.5802/aif.2563},
     zbl = {1223.14009},
     mrnumber = {2766221},
     language = {en},
     url = {http://dml.mathdoc.fr/item/AIF_2010__60_5_1515_0}
}
Schwede, Karl; Tucker, Kevin. On the number of compatibly Frobenius split subvarieties, prime $F$-ideals, and log canonical centers. Annales de l'Institut Fourier, Tome 60 (2010) pp. 1515-1531. doi : 10.5802/aif.2563. http://gdmltest.u-ga.fr/item/AIF_2010__60_5_1515_0/

[1] Ambro, F. Basic properties of log canonical centers (arXiv:math.AG/0611205)

[2] Ambro, F. The locus of log canonical singularities (arXiv:math.AG/9806067)

[3] Ambro, F. Quasi-log varieties, Tr. Mat. Inst. Steklova, Tome 240 (2003) no. Biratsion. Geom. Linein. Sist. Konechno Porozhdennye Algebry, pp. 220-239 (MR1993751 (2004f:14027)) | MR 1993751 | Zbl 1081.14021

[4] Brion, M.; Kumar, S. Frobenius splitting methods in geometry and representation theory, Birkhäuser Boston Inc., Boston, MA, Progress in Mathematics, Tome 231 (2005) (MR2107324 (2005k:14104)) | MR 2107324 | Zbl 1072.14066

[5] Eisenbud, D. Commutative algebra, Springer-Verlag, New York, Graduate Texts in Mathematics, Tome 150 (1995) (With a view toward algebraic geometry) | MR 1322960 | Zbl 0819.13001

[6] Enescu, F.; Hochster, M. The Frobenius structure of local cohomology, Algebra Number Theory, Tome 2 (2008) no. 7, pp. 721-754 (MR2460693) | Article | MR 2460693 | Zbl 1190.13003

[7] Ferrand, D. Conducteur, descente et pincement, Bull. Soc. Math. France, Tome 131 (2003) no. 4, pp. 553-585 (MR2044495 (2005a:13016)) | Numdam | MR 2044495 | Zbl 1058.14003

[8] Fujino, O. Introduction to the log minimal model program for log canonical pairs (2009, http://www.math.kyoto-u.ac.jp/preprint/2009/03fujino.pdf)

[9] Fujino, O. The indices of log canonical singularities, Amer. J. Math., Tome 123 (2001) no. 2, pp. 229-253 (MR1828222 (2002c:14003)) | Article | MR 1828222 | Zbl 1064.14001

[10] Greco, S.; Traverso, C. On seminormal schemes, Compositio Math., Tome 40 (1980) no. 3, pp. 325-365 (MR571055 (81j:14030)) | Numdam | MR 571055 | Zbl 0412.14024

[11] Grothendieck, A. Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. (1965) no. 24, pp. 231 | Numdam | MR 199181 | Zbl 0135.39701

[12] Hartshorne, R.; Speiser, R. Local cohomological dimension in characteristic p, Ann. of Math. (2), Tome 105 (1977) no. 1, pp. 45-79 (MR0441962 (56 #353)) | Article | MR 441962 | Zbl 0362.14002

[13] Helmke, S. On Fujita’s conjecture, Duke math. J., Tome 88 (1997) no. 2, pp. 201-216 | Article | MR 1455517 | Zbl 0876.14004

[14] Kawamata, Y. On Fujita’s freeness conjecture for 3-folds and 4-folds, Math. Ann., Tome 308 (1997) no. 3, pp. 491-505 (MR1457742 (99c:14008)) | Article | MR 1457742 | Zbl 0909.14001

[15] Kollár, J.; Mori, S. Birational geometry of algebraic varieties, Cambridge University Press, Cambridge, Cambridge Tracts in Mathematics, Tome 134 (1998) (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. MR1658959 (2000b:14018)) | MR 1658959 | Zbl 0926.14003

[16] Kumar, S.; Mehta, V. B. Finiteness of the number of compatibly-split subvarieties (to appear in Int. Math. Res. Not. arXiv:0901.2098) | Zbl 1183.13006

[17] Kunz, E. On Noetherian rings of characteristic p, Amer. J. Math., Tome 98 (1976) no. 4, pp. 999-1013 (MR0432625 (55 #5612)) | Article | MR 432625 | Zbl 0341.13009

[18] Lazarsfeld, R. Positivity in algebraic geometry. I, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 48 (2004) (Classical setting: line bundles and linear series. MR2095471 (2005k:14001a)) | MR 2095471

[19] Lazarsfeld, R. Positivity in algebraic geometry. II, Springer-Verlag, Berlin, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Tome 49 (2004) (Positivity for vector bundles, and multiplier ideals. MR2095472 (2005k:14001b)) | MR 2095472 | Zbl 1093.14500

[20] Mehta, V. B.; Ramanathan, A. Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2), Tome 122 (1985) no. 1, pp. 27-40 (MR799251 (86k:14038)) | Article | MR 799251 | Zbl 0601.14043

[21] Schwede, K. Centers of F-purity (to appear in Math. Z. arXiv:0807.1654) | Zbl pre05716914

[22] Schwede, K. F-adjunction (to appear in Algebra Number Theory. arXiv:0901.1154) | Zbl pre05704457

[23] Schwede, K. Gluing schemes and a scheme without closed points, American Mathematical Society, Providence, RI, Proceedings of the 2002 John H. Barrett Memorial Lectures Conference on Algebraic and Arithmetic Geometry (P. T. Y. Kachi, S. Mulay, ed.), Contemporary Mathematics, Tome 386 (2005) (p. 157–172) | MR 2182775

[24] Schwede, K.; Smith, K. Globally F-regular and log Fano varieties (to appear in Adv. Math. arXiv:0905.0404) | Zbl pre05712547

[25] Sharp, R. Y. Graded annihilators of modules over the Frobenius skew polynomial ring, and tight closure, Trans. Amer. Math. Soc., Tome 359 (2007) no. 9, p. 4237-4258 (electronic) | Article | MR 2309183 | Zbl 1130.13002

[26] Smith, K. E. Test ideals in local rings, Trans. Amer. Math. Soc., Tome 347 (1995) no. 9, pp. 3453-3472 | Article | MR 1311917 | Zbl 0849.13003

[27] Smith, K. E. Vanishing, singularities and effective bounds via prime characteristic local algebra, Amer. Math. Soc., Providence, RI, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., Tome 62 (1997) (p. 289–325. MR1492526 (99a:14026)) | MR 1492526 | Zbl 0913.13004

[28] Smith, K. E. Globally F-regular varieties: applications to vanishing theorems for quotients of Fano varieties, Michigan Math. J., Tome 48 (2000), pp. 553-572 (Dedicated to William Fulton on the occasion of his 60th birthday. MR1786505 (2001k:13007)) | Article | MR 1786505 | Zbl 0994.14012

[29] Swan, R. G. On seminormality, J. Algebra, Tome 67 (1980) no. 1, pp. 210-229 (MR595029 (82d:13006)) | Article | MR 595029 | Zbl 0473.13001